The biomedical value of identifying the genes and variants responsible for Mendelian disorders is extraordinarily high. The clinical manifestations of these disorders involve virtually all organ systems and their developmental and physiological parameters. About half of recognized Mendelian disorders (as enumerated in the OMIM database) remain unexplained at the molecular level and many more of these remain to be recognized. Over the last 3.25 years, the Baylor College of Medicine and the Johns Hopkins University School of Medicine human genetics programs have combined and formed the Baylor-Hopkins Center for Mendelian Genomics (BHCMG) to find Mendelian genes. In doing so, we have taken advantage of the synergies afforded by combining our expertise in clinical genetics, genomic technologies, genetic analysis and understanding the biological basis of genetic disease. We have met and will continue to meet the challenge of research subjects by utilizing our worldwide network of colleagues and former trainees. Using state of the art genomic methods and analytic tools, we have already sequenced the exome or the genome of 5,443 individuals, identifying 169 novel disease genes in the first 3.25 years of funding, and have more than 4,000 samples ready to sequence from collaborators in the USA and >20 other countries. In the future, we will expand this network of collaborators to identify even more samples. We have also developed automated processes to contact the authors of publications from unexplained Mendelian disorders in OMIM to recruit additional specific disease examples. We have designed and passed through the IRB an online consenting process that bypasses the bottlenecks of time difference and language in international and remote site recruiting. To streamline and monitor our progress we have developed PhenoDB, a web-based tool for the collection, storage and analysis of disease, phenotypic feature and genotype information. PhenoDB also tracks samples, and is updated with the deliberations of our expert committees for Phenotype Review and ELSI issues. We have and will continue to build on our existing high throughput sequencing pipelines and have developed integrated laboratory and analysis efforts with experts from both institutions to develop new methods and software to advance the field. We have and will disseminate the phenotype and molecular information through publication, lectures, posting to communal websites and dbGaP. To connect clinicians and scientists with interest in the same gene and accelerate confirmation of novel disease gene identification, we developed GeneMatcher, now part of the MatchMaker Exchange initiative involving geneticists around the world. Going forward, to educate health care providers and trainees, we plan to develop a Massive Open Online Course in genetics, and to educate the public while enhancing recruitment, we will develop a set of online educational videos.

Public Health Relevance

We have formed a partnership between two distinguished programs in human genetics, The Baylor - Hopkins Center for Mendelian Genomics or BHCMG, to recruit patients with Mendelian disorders. We continue to use state of the art genetics and genomics technology and analyses to identify the genes and variants responsible for these disorders and disseminate our results to the biomedical community.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Research Project with Complex Structure Cooperative Agreement (UM1)
Project #
3UM1HG006542-05S1
Application #
9269870
Study Section
Program Officer
Wang, Lu
Project Start
2011-12-05
Project End
2019-11-30
Budget Start
2016-09-28
Budget End
2016-11-30
Support Year
5
Fiscal Year
2016
Total Cost
$220,601
Indirect Cost
$75,752
Name
Johns Hopkins University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21205
Yuan, Bo; Neira, Juanita; Pehlivan, Davut et al. (2018) Clinical exome sequencing reveals locus heterogeneity and phenotypic variability of cohesinopathies. Genet Med :
Breuss, Martin W; Nguyen, An; Song, Qiong et al. (2018) Mutations in LNPK, Encoding the Endoplasmic Reticulum Junction Stabilizer Lunapark, Cause a Recessive Neurodevelopmental Syndrome. Am J Hum Genet 103:296-304
Liu, Jiaqi; Zhou, Yangzhong; Liu, Sen et al. (2018) The coexistence of copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) at a locus can result in distorted calculations of the significance in associating SNPs to disease. Hum Genet 137:553-567
Grochowski, Christopher M; Gu, Shen; Yuan, Bo et al. (2018) Marker chromosome genomic structure and temporal origin implicate a chromoanasynthesis event in a family with pleiotropic psychiatric phenotypes. Hum Mutat 39:939-946
Dinckan, N; Du, R; Petty, L E et al. (2018) Whole-Exome Sequencing Identifies Novel Variants for Tooth Agenesis. J Dent Res 97:49-59
Morimoto, Marie; Waller-Evans, Helen; Ammous, Zineb et al. (2018) Bi-allelic CCDC47 Variants Cause a Disorder Characterized by Woolly Hair, Liver Dysfunction, Dysmorphic Features, and Global Developmental Delay. Am J Hum Genet 103:794-807
Makrythanasis, Periklis; Maroofian, Reza; Stray-Pedersen, Asbjørg et al. (2018) Biallelic variants in KIF14 cause intellectual disability with microcephaly. Eur J Hum Genet 26:330-339
Callaway, Danielle A; Campbell, Ian M; Stover, Samantha R et al. (2018) Prioritization of Candidate Genes for Congenital Diaphragmatic Hernia in a Critical Region on Chromosome 4p16 using a Machine-Learning Algorithm. J Pediatr Genet 7:164-173
Wang, Kun; Zhao, Sen; Liu, Bowen et al. (2018) Perturbations of BMP/TGF-? and VEGF/VEGFR signalling pathways in non-syndromic sporadic brain arteriovenous malformations (BAVM). J Med Genet 55:675-684
Dinckan, Nuriye; Du, Renqian; Akdemir, Zeynep C et al. (2018) A biallelic ANTXR1 variant expands the anthrax toxin receptor associated phenotype to tooth agenesis. Am J Med Genet A 176:1015-1022

Showing the most recent 10 out of 90 publications