These studies focus on two topics: ovarian cancer and the Wnt pathway in human cancers. Ovarian cancer is the fifth most common cancer and the fourth leading cause of cancer death among women in the United States. Because of a lack of powerful screening and diagnostic tests, early detection has been difficult. Moreover, the molecular mechanisms important in ovarian cancer initiation, progression and resistance to chemotherapeutic drugs remain largely unknown. We are using SAGE and other state-of-the-art molecular techniques to identify tumor markers and gain a greater understanding of the molecular pathways involved in ovarian tumorigenesis and cisplatin resistance. Indeed, the analysis of gene expression in ovarian cancer suggests the involvement many novel pathways in this disease. We are currently investigating the roles of the different pathways using molecular and cellular approaches. Our ultimate goal is the development of mechanism-based interventions for ovarian cancer patients. For example, we have recently found an important role for extracellular matrix (ECM) remodeling in the development of drug resistance in ovarian cancer. Inhibition of ECM-cancer cell interactions may therefore provide novel therapeutic opportunities for the development of strategies to circumvent the problem of drug resistance in ovarian cancer. The Wnt pathway, which was originally defined as a crucial pathway for body patterning during fruit fly development, has recently been implicated in human cancer. APC, a gene mutated in 80% of all colon cancers, is involved in the downregulation of the Wnt pathway. Moreover, colon tumors containing wild-type APC, frequently contain activating mutations in other members of the pathway emphasizing its importance for colon cancer progression. We are developing inducible systems that may be useful in the identification of downstream transcriptional targets as well as upstream regulatory components of the pathway.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Intramural Research (Z01)
Project #
1Z01AG000512-05
Application #
6667925
Study Section
(LCMB)
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Aging
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Sherman-Baust, Cheryl A; Kuhn, Elisabetta; Valle, Blanca L et al. (2014) A genetically engineered ovarian cancer mouse model based on fallopian tube transformation mimics human high-grade serous carcinoma development. J Pathol 233:228-37
Rogalsky, Corianne; Vidal, Christine; Li, Xiangrui et al. (2012) Risky decision-making in older adults without cognitive deficits: an fMRI study of VMPFC using the Iowa Gambling Task. Soc Neurosci 7:178-90
Li, J; Wood 3rd, W H; Becker, K G et al. (2007) Gene expression response to cisplatin treatment in drug-sensitive and drug-resistant ovarian cancer cells. Oncogene 26:2860-72
D'Souza, Theresa; Indig, Fred E; Morin, Patrice J (2007) Phosphorylation of claudin-4 by PKCepsilon regulates tight junction barrier function in ovarian cancer cells. Exp Cell Res 313:3364-75
Hewitt, Kyle J; Agarwal, Rachana; Morin, Patrice J (2006) The claudin gene family: expression in normal and neoplastic tissues. BMC Cancer 6:186
Honda, Hiroshi; Pazin, Michael J; Ji, Hongxiu et al. (2006) Crucial roles of Sp1 and epigenetic modifications in the regulation of the CLDN4 promoter in ovarian cancer cells. J Biol Chem 281:21433-44
Nakayama, Kentaro; Nakayama, Naomi; Davidson, Ben et al. (2006) A BTB/POZ protein, NAC-1, is related to tumor recurrence and is essential for tumor growth and survival. Proc Natl Acad Sci U S A 103:18739-44
D'Souza, Theresa; Agarwal, Rachana; Morin, Patrice J (2005) Phosphorylation of claudin-3 at threonine 192 by cAMP-dependent protein kinase regulates tight junction barrier function in ovarian cancer cells. J Biol Chem 280:26233-40
Agarwal, Rachana; D'Souza, Theresa; Morin, Patrice J (2005) Claudin-3 and claudin-4 expression in ovarian epithelial cells enhances invasion and is associated with increased matrix metalloproteinase-2 activity. Cancer Res 65:7378-85
Chen, Yu-Chi; Pohl, Gudrun; Wang, Tian-Li et al. (2005) Apolipoprotein E is required for cell proliferation and survival in ovarian cancer. Cancer Res 65:331-7

Showing the most recent 10 out of 41 publications