Bloom syndrome (BS) is a rare human genetic disease in which patients exhibit growth retardation, immunodeficiency, infertility, photosensitivity, and predisposition to cancer. The gene defective in BS has recently been cloned (named BLM) and was found to belong to an evolutionarily conserved helicase family, called RecQ. The recombinant BLMp protein has been shown to possess a helicase activity in vitro, suggesting that BS could be caused by a defect in a DNA metabolic reaction, such as replication or repair. Interestingly, BLM gene belongs to the helicase family, like the genes mutated in Werner Syndrome and Rothmund-Thomson syndrome (RTS). All three diseases have some common features, such as genetic instability and predisposition to cancer. But each disease has its own distinctive symptoms. For example, WS patients prematurely display many age-related features, including osteoporosis, atherosclerosis, diabetes and cataracts, which are not observed in BS or RTS. Also, WS individuals do not show immunodeficiency or photosensivity like BS patients. To understand the molecular mechanism of these human diseases, we propose to isolate the protein complexes containing each gene product. To date, we have successfully purified three multiprotein complexes containing the BLM syndrome gene product (BLM). We were able to identify all components of these complexes. We found that these BLM complexes contains Topoisomerase IIIa, replication protein A, and MLH1, proteins which are known to interact with BLM and could stimulate its helicase activity. We also found that this complex contains gene products involved in another genome instability disease, Fanconi Anemia. A report on this work has been submitted for publication. We are currently investigating the mechanism of how this complex contributes to both Bloom syndrome and Fanconi Anemia.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Intramural Research (Z01)
Project #
1Z01AG000657-03
Application #
6668115
Study Section
(LG)
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Aging
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Lee, Seung Kyu; Xue, Yutong; Shen, Weiping et al. (2018) Topoisomerase 3? interacts with RNAi machinery to promote heterochromatin formation and transcriptional silencing in Drosophila. Nat Commun 9:4946
Ahmad, Muzammil; Shen, Weiping; Li, Wen et al. (2017) Topoisomerase 3? is the major topoisomerase for mRNAs and linked to neurodevelopment and mental dysfunction. Nucleic Acids Res 45:2704-2713
Ahmad, Muzammil; Xue, Yutong; Lee, Seung Kyu et al. (2016) RNA topoisomerase is prevalent in all domains of life and associates with polyribosomes in animals. Nucleic Acids Res 44:6335-49
Hosono, Yoshifumi; Abe, Takuya; Ishiai, Masamichi et al. (2014) Tumor suppressor RecQL5 controls recombination induced by DNA crosslinking agents. Biochim Biophys Acta 1843:1002-12
Xu, Dongyi; Shen, Weiping; Guo, Rong et al. (2013) Top3? is an RNA topoisomerase that works with fragile X syndrome protein to promote synapse formation. Nat Neurosci 16:1238-47
Baradaran-Heravi, Alireza; Raams, Anja; Lubieniecka, Joanna et al. (2012) SMARCAL1 deficiency predisposes to non-Hodgkin lymphoma and hypersensitivity to genotoxic agents in vivo. Am J Med Genet A 158A:2204-13
Islam, M Nurul; Paquet, Nicolas; Fox 3rd, David et al. (2012) A variant of the breast cancer type 2 susceptibility protein (BRC) repeat is essential for the RECQL5 helicase to interact with RAD51 recombinase for genome stabilization. J Biol Chem 287:23808-18
Hoadley, Kelly A; Xue, Yutong; Ling, Chen et al. (2012) Defining the molecular interface that connects the Fanconi anemia protein FANCM to the Bloom syndrome dissolvasome. Proc Natl Acad Sci U S A 109:4437-42
Chen, H; You, M J; Jiang, Y et al. (2011) RMI1 attenuates tumor development and is essential for early embryonic survival. Mol Carcinog 50:80-8
Xu, Dongyi; Muniandy, Parameswary; Leo, Elisabetta et al. (2010) Rif1 provides a new DNA-binding interface for the Bloom syndrome complex to maintain normal replication. EMBO J 29:3140-55

Showing the most recent 10 out of 16 publications