Dendritic cells (DC) was shown to enhance the efficiency of HIV-1 infection to T cells through the binding of viral gp120 to a DC surface C-type lectin-like receptor, DC-SIGN, and subsequent delivering of the viral particles to T cells. The recruitment of DC-SIGN by HIV to facilitate the viral infection makes the receptor a potential new target for vaccines and anti-viral therapy. We have expressed several soluble forms of DC-SIGN and DC-SIGNR using a bacterial system followed by in vitro reconstitution. The refolded CRD, R8 and Ecto forms of DC-SIGN exist in solution as monomer, dimer and tetramer, respectively, suggesting the function of the extracellular repeat region is to stabilize the oligomeric form of the receptor. All three forms of the soluble receptor bind to gp120 at near nM affinity. Antibodies were raised against the recombinant DC-SIGN(R8) and one (II.1) exhibits near complete inhibition to the receptor/ gp120 binding both in solution and on the surface of immature dendritic cells, whereas the other display variable inhibition effects. In addition to the anti-DC-SIGN antibodies, two anti-gp120 antisera were also tested but were not able to block the gp120 binding to DC-SIGN. All constructs of the soluble receptor were subjected to crystallization screening experiments and the preliminary results show small crystals of the receptor can be obtained.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Intramural Research (Z01)
Project #
1Z01AI000880-01
Application #
6521504
Study Section
(LIG)
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
2001
Total Cost
Indirect Cost
Name
Niaid Extramural Activities
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Chisolm, Danielle A; Savic, Daniel; Moore, Amanda J et al. (2017) CCCTC-Binding Factor Translates Interleukin 2- and ?-Ketoglutarate-Sensitive Metabolic Changes in T Cells into Context-Dependent Gene Programs. Immunity 47:251-267.e7
Zhu, Yina; Gong, Ke; Denholtz, Matthew et al. (2017) Comprehensive characterization of neutrophil genome topology. Genes Dev 31:141-153
Chen, Shuwen; Miyazaki, Masaki; Chandra, Vivek et al. (2016) Id3 Orchestrates Germinal Center B Cell Development. Mol Cell Biol 36:2543-52
Lucas, Joseph S; Zhang, Yaojun; Dudko, Olga K et al. (2014) 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions. Cell 158:339-352
Lin, Yin C; Benner, Christopher; Mansson, Robert et al. (2012) Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate. Nat Immunol 13:1196-204
Zhuravleva, Marina A; Trandem, Kathryn; Sun, Peter D (2008) Structural implications of Siglec-5-mediated sialoglycan recognition. J Mol Biol 375:437-47
Snyder, Greg A; Colonna, Marco; Sun, Peter D (2005) The structure of DC-SIGNR with a portion of its repeat domain lends insights to modeling of the receptor tetramer. J Mol Biol 347:979-89
Gupta, Neil; Arthos, James; Khazanie, Prateeti et al. (2005) Targeted lysis of HIV-infected cells by natural killer cells armed and triggered by a recombinant immunoglobulin fusion protein: implications for immunotherapy. Virology 332:491-7
Snyder, Greg A; Ford, Jennifer; Torabi-Parizi, Parizad et al. (2005) Characterization of DC-SIGN/R interaction with human immunodeficiency virus type 1 gp120 and ICAM molecules favors the receptor's role as an antigen-capturing rather than an adhesion receptor. J Virol 79:4589-98