The molecular pathogenesis of Y. pestis in relevant animal models has been relatively neglected because of the scarcity of secure BSL-3 facilities and trained personnel. The threat of bioterrorism and the emergence of multiply-antibiotic resistant strains of Y. pestis increases the urgency for a more detailed understanding of the host-pathogen relationship at the molecular level that may lead to the design of improved medical countermeasures and diagnostics. RML is one of the few sites in the world where plague pathogenesis can be comprehensively studied at the molecular level. The objective of this project is to establish mouse and rat models of bubonic plague that incorporate flea-to-rodent transmission to investigate the role of specific Y. pestis virulence factors and to characterize the host response to naturally acquired infection. We have established a mouse model to study dissemination and pathogenesis of Y. pestis after flea-borne transmission. In this model, one or more infected fleas are allowed to feed on a restrained mouse. In initial trials, the average number of Y. pestis transmitted by an infectious fleabite was ascertained, an important epidemiologic parameter for which few data are available. The number of bacteria contained in skin biopsies of bite sites was determined. Individual blocked fleas exhibited considerable variability in the number of Y. pestis they introduced into the dermis: only 12 of 48 (25%) skin biopsies contained any bacteria, and the number of Y. pestis in the positive samples ranged from 5 to 7x10^3 (avg. = 1000). From a practical standpoint, it was important to determine the extent of flea to flea variation so that it can be taken into account in planning future transmission studies. In this initial study, we also established that bacteria injected by needle or fleabite into the dorsal posterior dermis disseminated to and could be recovered from dissected inguinal lymph nodes. We have also established a rat model of bubonic plague and characterized the kinetics, microbiology, and histopathology of bubonic plague in rats following intradermal injection of Y. pestis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Intramural Research (Z01)
Project #
1Z01AI000919-03
Application #
6987087
Study Section
(LHBP)
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2004
Total Cost
Indirect Cost
Name
Niaid Extramural Activities
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Zhang, Shu-sheng; Park, Chae Gyu; Zhang, Pei et al. (2008) Plasminogen activator Pla of Yersinia pestis utilizes murine DEC-205 (CD205) as a receptor to promote dissemination. J Biol Chem 283:31511-21
Zhang, Pei; Skurnik, Mikael; Zhang, Shu-Sheng et al. (2008) Human dendritic cell-specific intercellular adhesion molecule-grabbing nonintegrin (CD209) is a receptor for Yersinia pestis that promotes phagocytosis by dendritic cells. Infect Immun 76:2070-9
Derbise, Anne; Chenal-Francisque, Viviane; Pouillot, Flavie et al. (2007) A horizontally acquired filamentous phage contributes to the pathogenicity of the plague bacillus. Mol Microbiol 63:1145-57
Yang, Xinghong; Hinnebusch, B Joseph; Trunkle, Theresa et al. (2007) Oral vaccination with salmonella simultaneously expressing Yersinia pestis F1 and V antigens protects against bubonic and pneumonic plague. J Immunol 178:1059-67
Sebbane, Florent; Lemaitre, Nadine; Sturdevant, Daniel E et al. (2006) Adaptive response of Yersinia pestis to extracellular effectors of innate immunity during bubonic plague. Proc Natl Acad Sci U S A 103:11766-71
Lemaitre, Nadine; Sebbane, Florent; Long, Daniel et al. (2006) Yersinia pestis YopJ suppresses tumor necrosis factor alpha induction and contributes to apoptosis of immune cells in the lymph node but is not required for virulence in a rat model of bubonic plague. Infect Immun 74:5126-31
DeLeo, Frank R; Hinnebusch, B Joseph (2005) A plague upon the phagocytes. Nat Med 11:927-8
Jarrett, Clayton O; Sebbane, Florent; Adamovicz, Jeffrey J et al. (2004) Flea-borne transmission model to evaluate vaccine efficacy against naturally acquired bubonic plague. Infect Immun 72:2052-6