Resistance to chemotherapy occurs in cancer cells because of intrinsic or acquired changes in expression of specific proteins. We have studied resistance to natural product chemotherapeutic agents such as doxorubicin, Vinca alkaloids, and taxol, and to the synthetic drug cisplatin. In both cases, cells become simultaneously resistant to multiple drugs because of reductions in intracellular drug concentrations. For the natural product drugs, this cross-resistance is frequently due to expression of an energy-dependent drug efflux system (ABC transporter) known as P-glycoprotein (P gp), the product of the MDR1 or ABCB1 gene, or to other members of the ABC transporter family. To explore the possibility that other members of the ABC family of transporters may be involved in drug resistance in cancer, we have developed real-time PCR for detection of most of the 48 known ABC transporters; these techniques have been used to correlate expression of novel ABC transporters in cancer cell lines of known drug resistance. Expression of approximately 30 ABC transporters has been shown to correlate with resistance to specific cytotoxic drugs. Transfection of several of these transporters has confirmed that they confer resistance to the drugs detected in the correlation studies. Furthermore, this analysis has revealed that some drugs are more toxic to P-gp expressing cells than to non-expressors, suggesting a novel approach to treatment of MDR cancers. Several different chemical classes with this property, including thiosemicarbazides, have been identified. One compound, NSC73306, has been studied in detail and shown to kill P-gp-expressing cells with high specificity by blocking them in S phase. Surviving cells do not express P-gp and are sensitive to chemotherapy with natural product drugs such as anthracyclines, paclitaxel and Vinca alkaloids. Studies on the normal function of P-gp suggest that it is involved in normal uptake and distribution of many drugs. Common polymorphic variants of P-gp have been detected, but coding polymorphisms do not appear to alter the drug transport functions of P-gp. However, a synonymous polymorphism (C3435T, no amino acid change) in the setting of a specific P-gp haplotype can affect efficiency of P-gp pumping by altering the rhythm of protein folding and changing substrate and inhibitor interactions with P-gp. Use of the MDR1 gene as a dominant selectable marker in gene therapy has focused on the development of SV40 as a vector for delivery of MDR1. Using recombinant SV40 capsid proteins, it is possible to package DNA and RNA in vitro. In particular, siRNA can be delivered with high efficiency and at much lower concentrations than are needed for lipofection. Delivery of toxic DNAs, such as Pseudomonas exotoxin cDNA, can be used to target cancers in vitro and in mouse xenoplant models. We have also found a unique signature of ABC transporters in melanoma cells. One of these transporters, ABCB5, is closely related to P-gp (MDR1) and appears to contribute to MDR in melanoma cells. Detailed analysis of the cellular handling of cisplatin in melanoma cells has indicated that it accumulates in melanosomes (and not in nuclei) that can then be extruded by the cells. Some of the intractability of melanomas to chemotherapy may be attributable to both its unique set of ABC transporters and melanosomal sequestration and extrusion of cytotoxic drugs. Cisplatin-resistant mutants have revealed that cross-resistance to methotrexate, some nucleoside analogs, heavy metals, and toxins is due to a reduction in drug influx resulting from a pleiotropic defect in uptake systems. Recent evidence suggests a global defect in endocytosis in these cisplatin-resistant cells and defects in intracellular protein trafficking, the cytoskeleton and mitochondrial energy production

Agency
National Institute of Health (NIH)
Institute
Division of Basic Sciences - NCI (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC005598-17
Application #
7337913
Study Section
(LCB)
Project Start
Project End
Budget Start
Budget End
Support Year
17
Fiscal Year
2006
Total Cost
Indirect Cost
Name
Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Kannan, Pavitra; Pike, Victor W; Halldin, Christer et al. (2013) Factors that limit positron emission tomography imaging of p-glycoprotein density at the blood-brain barrier. Mol Pharm 10:2222-9
Kannan, Pavitra; Brimacombe, Kyle R; Kreisl, William C et al. (2011) Lysosomal trapping of a radiolabeled substrate of P-glycoprotein as a mechanism for signal amplification in PET. Proc Natl Acad Sci U S A 108:2593-8
Shomron, Noam; Hamasaki-Katagiri, Nobuko; Hunt, Ryan et al. (2010) A splice variant of ADAMTS13 is expressed in human hepatic stellate cells and cancerous tissues. Thromb Haemost 104:531-5
Kannan, Pavitra; Brimacombe, Kyle R; Zoghbi, Sami S et al. (2010) N-desmethyl-loperamide is selective for P-glycoprotein among three ATP-binding cassette transporters at the blood-brain barrier. Drug Metab Dispos 38:917-22
Gillet, Jean-Pierre; Macadangdang, Benjamin; Fathke, Robert L et al. (2009) The development of gene therapy: from monogenic recessive disorders to complex diseases such as cancer. Methods Mol Biol 542:5-54
Paterson, Jill K; Gottesman, Michael M (2007) P-Glycoprotein is not present in mitochondrial membranes. Exp Cell Res 313:3100-5
Kimchi-Sarfaty, Chava; Marple, Andrew H; Shinar, Shiri et al. (2007) Ethnicity-related polymorphisms and haplotypes in the human ABCB1 gene. Pharmacogenomics 8:29-39
Sauna, Zuben E; Kimchi-Sarfaty, Chava; Ambudkar, Suresh V et al. (2007) The sounds of silence: synonymous mutations affect function. Pharmacogenomics 8:527-32
Nussenblatt, Robert B; Chan, Chi-Chao; Wilson, Wyndham H et al. (2006) International Central Nervous System and Ocular Lymphoma Workshop: recommendations for the future. Ocul Immunol Inflamm 14:139-44
Ludwig, Joseph A; Szakacs, Gergely; Martin, Scott E et al. (2006) Selective toxicity of NSC73306 in MDR1-positive cells as a new strategy to circumvent multidrug resistance in cancer. Cancer Res 66:4808-15

Showing the most recent 10 out of 48 publications