The Jak1, Jak2, Jak3, and Fes tyrosine kinases have been demonstrated to undergo tyrosine phosphorylation in response to interleukin (IL-4)-4 stimulation in different cell systems. However, it is not clear which, if any, of these kinases are responsible for initiating IL-4-induced tyrosine phosphorylation of intracellular substrates in vivo. In the present study, we have utilized a mutant Jak1-deficient HeLa cell line, E1C3, and its parental Jak1-expressing counterpart, 1D4, to analyze the role of Jak1 in mediating IL-4-induced tyrosine phosphorylation events. IL-4 treatment rapidly induced tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and IRS-2 in 1D4 but not in E1C3 cells. IL-4- mediated tyrosine phosphorylation of Stat6 was pronounced in 1D4 cells, while no IL-4-induced Stat6 phosphorylation was detected in E1C3 cells. IL-4 also induced Stat6 DNA binding activity from lysates of 1D4 but not E1C3 cells utilizing a radiolabeled immunoglobulin heavy chain germline epsilon promotor sequence in an electrophoretic mobility shift assay. Reconstitution of Jak1 expression in E1C3 cells restored the ability of IL-4 to induce IRS and Stat6 tyrosine phosphorylation. These results provide evidence that Jak1 expression is required for mediating tyrosine phosphorylation and activation of crucial molecules involved in IL-4 signal transduction.