Pharmacological agents are being developed to modulate phosphotyrosyl (pTyr) dependent cell signalling. Emphasis is on inhibitors of pTyr- dependent binding interactions which are mediated by src homology 2 (SH2) domains and on protein-tyrosine phosphatase (PTP) inhibitors. Central to both of these efforts is the development of new pTyr mimetics which afford either increased stability toward enzymatic degradation by PTPs or increased affinity. In the SH2 domain area, development of cell-permeable growth factor receptor-bound 2 (Grb2) antagonists is being undertaken as potential new therapeutics for a variety of cancers including erbB-2 dependent breast cancers and Met dependent leukemias. For this work, peptidomimetics have been designed as conformationally constrained analogues of natural Grb2 SH2 domain- bound pTyr-containing peptides. In related work, a series of new pTyr- mimicking amino acid analogues have also been prepared to enhance cell permeability. Among these are medium-size, non phosphate containing analogues which exhibit low nanomolar Grb2 SH2 domain inhibition constants. Promising analogues exhibit potent inhibition of Grb2 binding in whole cell systems, and display good cytostatic effects against breast cancer cells grown in culture or in soft agar. Studies are currently underway to examine the utility of the agents in combination therapies directed against breast cancer. Preliminary cell studies indicate that non toxic concentrations of our synthetic Grb2 inhibitors can act cooperatively with certain standard cytotoxic chemotherapeutic agents, to significantly reduce the growth inhibitory dose. In other cellular studies, our synthetic Grb2 inhibitors have been shown to inhibit human growth factor (HGF)-induced cell migration in Met-containing fibroblasts. Work is currently in progress to examine these agents in whole animal metastasis models. In the phosphatase area, a structure-based approach toward inhibitor design is being pursued. Using an epidermal growth factor receptor (EGFr)-derived pTyr- containing peptide sequence as a platform, we have examined a large number of novel non phosphorus containing pTyr mimetics for inhibitory potency against PTP1B. Highly potent motifs identified in this fashion have served as models for small molecule peptidomimetic design. The most potent of these low molecular weight inhibitors is currently undergoing co-crystallography with PTP1B for X-ray crystal structure determination.
The aim of this work is to identify high affinity small molecule inhibitors with improved bioavailability as tools for studying cellular signal transduction, and as potential therapeutic agents. - breast cancer, design, inhibitor, peptidomimetic, Protein-Tyrosine Kinase, Protein-Tyrosine Phosphatase, SH2 domain, Signal Transduction, synthesis, Leukemia, Cell signaling, peptidomimetics,

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC006198-10
Application #
6289182
Study Section
Special Emphasis Panel (LMC)
Project Start
Project End
Budget Start
Budget End
Support Year
10
Fiscal Year
1999
Total Cost
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Liu, Fa; Park, Jung-Eun; Qian, Wen-Jian et al. (2011) Serendipitous alkylation of a Plk1 ligand uncovers a new binding channel. Nat Chem Biol 7:595-601
Liu, Fa; Park, Jung-Eun; Lee, Kyung S et al. (2009) Preparation of orthogonally protected (2S, 3R)-2-amino-3-methyl-4-phosphonobutyric acid (Pmab) as a phosphatase-stable phosphothreonine mimetic and its use in the synthesis of Polo-box domain-binding peptides. Tetrahedron 65:9673-9679
Jiang, Sheng; Liao, Chenzhong; Bindu, Lakshman et al. (2009) Discovery of thioether-bridged cyclic pentapeptides binding to Grb2-SH2 domain with high affinity. Bioorg Med Chem Lett 19:2693-8
Cao, Xuefei; Plasencia, Carmen; Kanzaki, Atsuko et al. (2009) Elucidation of the molecular mechanisms of a salicylhydrazide class of compounds by proteomic analysis. Curr Cancer Drug Targets 9:189-201
Liu, Fa; Worthy, Karen M; Bindu, Lakshman K et al. (2007) Structural examination of ring-closing metathesis-derived 15-member macrocycles as Grb2 SH2 domain-binding tetrapeptide mimetics. J Org Chem 72:9635-42
Giubellino, Alessio; Gao, Yang; Lee, Sunmin et al. (2007) Inhibition of tumor metastasis by a growth factor receptor bound protein 2 Src homology 2 domain-binding antagonist. Cancer Res 67:6012-6
Kang, Sang-Uk; Choi, Won Jun; Oishi, Shinya et al. (2007) Examination of acylated 4-aminopiperidine-4-carboxylic acid residues in the phosphotyrosyl+1 position of Grb2 SH2 domain-binding tripeptides. J Med Chem 50:1978-82
Choi, Won Jun; Shi, Zhen-Dan; Worthy, Karen M et al. (2006) Application of azide-alkyne cycloaddition 'click chemistry' for the synthesis of Grb2 SH2 domain-binding macrocycles. Bioorg Med Chem Lett 16:5265-9
Dharmawardana, Pathirage G; Peruzzi, Benedetta; Giubellino, Alessio et al. (2006) Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy. Anticancer Drugs 17:13-20
Kang, Sang-Uk; Shi, Zhen-Dan; Worthy, Karen M et al. (2005) Examination of phosphoryl-mimicking functionalities within a macrocyclic Grb2 SH2 domain-binding platform. J Med Chem 48:3945-8

Showing the most recent 10 out of 37 publications