The general research interests of our group are to determine the structure of biological molecules, including nucleic acids, enzymes, RNA(DNA)uprotein complexes and clinically important enzymeudrug complexes, using NMR and various other biophysical and biochemical methods. The knowledge of these biological structures will help us to understand the structural basis for the function of biological molecules and complexes.

Agency
National Institute of Health (NIH)
Institute
Division of Basic Sciences - NCI (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC010379-03
Application #
6763711
Study Section
(SBL)
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2002
Total Cost
Indirect Cost
Name
Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Lee, Donghan; Walsh, Joseph D; Mikhailenko, Irina et al. (2006) RAP uses a histidine switch to regulate its interaction with LRP in the ER and Golgi. Mol Cell 22:423-30
Walsh, Joseph D; Kuszweski, John; Wang, Yun-Xing (2005) Determining a helical protein structure using peptide pixels. J Magn Reson 177:155-9
Walsh, Joseph D; Wang, Yun-Xing (2005) Periodicity, planarity, residual dipolar coupling, and structures. J Magn Reson 174:152-62
Wu, YiBing; Migliorini, Molly; Walsh, Joseph et al. (2004) NMR structural studies of domain 1 of receptor-associated protein. J Biomol NMR 29:271-9
Walsh, Joseph D; Cabello-Villegas, Javier; Wang, Yun-Xing (2004) Periodicity in residual dipolar couplings and nucleic acid structures. J Am Chem Soc 126:1938-9
Cabello-Villegas, Javier; Giles, Keith E; Soto, Ana Maria et al. (2004) Solution structure of the pseudo-5' splice site of a retroviral splicing suppressor. RNA 10:1388-98
Neamati, Nouri; Murthy, Manisha; Wang, Yun-Xing (2003) Preparation of DNA-protein complexes suitable for spectroscopic analysis. Methods Mol Med 85:185-202
Wu, YiBing; Migliorini, Molly; Yu, Ping et al. (2003) 1H, 13C and 15N resonance assignments of domain 1 of receptor associated protein. J Biomol NMR 26:187-8