MULTIPLE COSTIMULATORY MODALITIES ENHANCE CTL AVIDITY. Recent studies in both animal models and clinical trials have demonstrated that the avidity of T cells is a major determinant of antitumor and antiviral immunity. We evaluated several different vaccine strategies for their ability to enhance both the quantity and avidity of CTL responses. CD8+ T cell quantity was measured by tetramer binding precursor frequency, and avidity was measured by both tetramer dissociation and quantitative cytolytic function. We have evaluated a peptide, a viral vector expressing the Ag transgene alone, with one costimulatory molecule (B7-1), and with three costimulatory molecules (B7-1, ICAM-1, and LFA-3), with anti-CTLA-4 mAb, with GM-CSF, and combinations of the above. We have evaluated these strategies in both a foreign Ag model using beta-galactosidase as immunogen, and in a """"""""self"""""""" Ag model, using carcinoembryonic Ag as immunogen in carcinoembryonic Ag transgenic mice. The combined use of several of these strategies was shown to enhance not only the quantity, but, to a greater magnitude, the avidity of T cells generated; a combination strategy is also shown to enhance antitumor effects. These results thus demonstrate multiple strategies that can be used in both antitumor and antiviral vaccine settings to generate higher avidity host T cell responses.VACCINES WITH ENHANCED COSTIMULATION MAINTAIN HIGH AVIDITY MEMORY CTL. Although previous studies have demonstrated that vaccines using enhanced costimulation will enhance the level and avidity of Ag-specific T cells from naive mice, there are conflicting data about the effects of vaccines using enhanced costimulation (vector or dendritic cell based) on the survival of memory T cells. We have extended previous observations that primary vaccination with a recombinant vaccinia virus (rV-) expressing a model Ag (LacZ) and a triad of T cell costimulatory molecules (B7-1, ICAM-1, and LFA-3 (designated TRICOM)) enhances the level and avidity of T cells from naive vaccinated C57BL/6 (Thy1.2) mice. Adoptive transfer of Thy1.1 memory CD8+ T cells into naive Thy1.2 C57BL/6 mice was followed by booster vaccinations with a recombinant fowlpox (rF-)-expressing LacZ (rF-LacZ) or booster vaccinations with rF-LacZ/TRICOM. Analysis of levels of beta-galactosidase tetramer-positive T cells and functional assays (IFN-gamma expression and lytic activity) determined that booster vaccinations with rF-LacZ/TRICOM were superior to booster vaccinations with rF-LacZ in terms of both maintenance and enhanced avidity of memory CD8+ T cells. Antitumor experiments using a self-Ag (CEA vaccines in CEA transgenic mice bearing CEA-expressing tumors) also demonstrated that the use of booster vaccinations with vaccines bearing enhanced costimulatory capacity had superior antitumor effects. These studies thus have implications in the design of more effective vaccine strategies.INTRATUMORAL VACCINATION AND DIVERSIFIED SUBCUTANEOUS/INTRATUMORAL VACCINATION WITH RECOMBINANT POXVIRUSES ENCODING A TUMOR ANTIGEN AND MULTIPLE COSTIMULATORY MOLECULES. Intratumoral (i.t.) vaccination represents a potential modality for the therapy of tumors. Previous i.t. vaccination studies have focused on the efficacy of i.t. vaccination alone. There are no reports that clearly compared i.t. vaccination with systemic vaccination achieved by s.c., intradermal, or i.m. injection, or combining both modalities of systemic and i.t. vaccination.We compared the antitumor effects induced by a systemic vaccination regimen (s.c.) and i.t. vaccination, and a sequential s.c/i.t. vaccination regimen.
Showing the most recent 10 out of 31 publications