We have previously demonstrated that multiple immunizations with vector-based vaccines containing transgenes for tumor antigens and a triad of costimulatory molecules (TRICOM) enhance the expansion and functional avidity of antigen-specific memory CD8+ T cells in a mouse model. However, the effect of enhanced costimulation on human memory CD8+ T cells is still unclear. The study reported here was an in vitro investigation of the proliferation and function of carcinoembryonic antigen (CEA)-specific human memory CD8+ T cells following enhanced costimulation. Our results demonstrated that TRICOM costimulation enhanced production of multiple cytokines and expansion of CEA-specific memory CD8+ T cells. The lytic capacity of memory cytotoxic T lymphocytes (CTLs) toward CEA+ tumors was also significantly enhanced. Interleukin-2R-alpha (CD25) was upregulated dramatically following antigen-presenting cell (APC)-TRICOM stimulation, suggesting that the enhanced expansion of memory CD8+ T cells may be mediated by increased expression of IL-2R on memory T cells. The enhanced cytokine production and proliferation following TRICOM signaling was completely blocked by the combination of neutralizing antibodies against B7-1, ICAM-1, and LFA-3, the costimulatory molecules comprising TRICOM. No difference in T-cell apoptosis was observed between APC-TRICOM and APC-wild-type groups, as determined by annexin V, Bcl-2, and active caspase-3 staining. Results indicated that enhanced costimulation greatly expanded human CEA-specific CD8+ T cells and enhanced T-cell function, without inducing increased apoptosis of CEA-specific memory CD8+ T cells.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Intramural Research (Z01)
Project #
1Z01BC010598-05
Application #
7733104
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2008
Total Cost
$433,644
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Bernstein, Michael B; Chakraborty, Mala; Wansley, Elizabeth K et al. (2008) Recombinant Saccharomyces cerevisiae (yeast-CEA) as a potent activator of murine dendritic cells. Vaccine 26:509-21
Chakraborty, Mala; Wansley, Elizabeth K; Carrasquillo, Jorge A et al. (2008) The use of chelated radionuclide (samarium-153-ethylenediaminetetramethylenephosphonate) to modulate phenotype of tumor cells and enhance T cell-mediated killing. Clin Cancer Res 14:4241-9
Chakraborty, Mala; Gelbard, Alexander; Carrasquillo, Jorge A et al. (2008) Use of radiolabeled monoclonal antibody to enhance vaccine-mediated antitumor effects. Cancer Immunol Immunother 57:1173-83
Mostbock, Sven; Lutsiak, M E Christine; Milenic, Diane E et al. (2008) IL-2/anti-IL-2 antibody complex enhances vaccine-mediated antigen-specific CD8(+) T cell responses and increases the ratio of effector/memory CD8(+) T cells to regulatory T cells. J Immunol 180:5118-29
Lechleider, Robert J; Arlen, Philip M; Tsang, Kwong-Yok et al. (2008) Safety and immunologic response of a viral vaccine to prostate-specific antigen in combination with radiation therapy when metronomic-dose interleukin 2 is used as an adjuvant. Clin Cancer Res 14:5284-91
Rogers, Connie J; Berrigan, David; Zaharoff, David A et al. (2008) Energy restriction and exercise differentially enhance components of systemic and mucosal immunity in mice. J Nutr 138:115-22
Lutsiak, M E Christine; Tagaya, Yutaka; Adams, Anthony J et al. (2008) Tumor-induced impairment of TCR signaling results in compromised functionality of tumor-infiltrating regulatory T cells. J Immunol 180:5871-81
Wansley, Elizabeth K; Chakraborty, Mala; Hance, Kenneth W et al. (2008) Vaccination with a recombinant Saccharomyces cerevisiae expressing a tumor antigen breaks immune tolerance and elicits therapeutic antitumor responses. Clin Cancer Res 14:4316-25
Madan, Ravi A; Gulley, James L; Schlom, Jeffrey et al. (2008) Analysis of overall survival in patients with nonmetastatic castration-resistant prostate cancer treated with vaccine, nilutamide, and combination therapy. Clin Cancer Res 14:4526-31
Gulley, James L; Arlen, Philip M; Tsang, Kwong-Yok et al. (2008) Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma. Clin Cancer Res 14:3060-9

Showing the most recent 10 out of 31 publications