We have investigated the interaction of lipoproteins with liposomes to form recombinant particles. A number of lipoprotein fractions (VLDL, IDL, LDL, and HDL) all disrupt liposome structure by an essentially irreversible and quasistoichiometric process. In the case of HDL, the major apoprotein, A-I, recombines with dimyristoyl phosphatidyl choline vesicles 40:1 lipid-protein to form discs approximately 100 Angstrom in diameter and 32 Angstrom in thickness, with protein on the rim. These structural results were obtained by a combination of neutron scattering, electron microscopy, column chromatography, and fluorescence techniques. With dipalmitoyl phosphatidylcholine, A-I also forms what we term """"""""vesicular recombinant"""""""" particles in a process which may relate to physiological mechanisms by which proteins are assembled into membranes and lipoproteins. To study this process we have developed a technique called """"""""phase transition release"""""""" (PTR) which is also being applied to study incorporation of tubulin into membranes. Lipoproteins were labeled with the fluorescent lipid 3,3 dioctadecylindocarbocyanine for studies of interaction will cell surface lipoprotein receptors. The lipoproteins are also being labeled with NBD lipids for two-color fluorescence identification of cells in atheroscleroic plaques. A statistical mechanical algorithm (HAL) was devised for evaluating amphipathic helical structures in proteins and peptides. This is being used to define issues of structure and immunogenicity with respect to HLA antigens and to the envelope polyprotein of HTLVIII/LAV. Lipid membrane systems and human cell isolates are being used experimentally to investigate the interaction between characterized synthetic antigenic peptides and T-cells in the recognition process. The results may have application to the design of vaccines.

Agency
National Institute of Health (NIH)
Institute
Division of Cancer Biology And Diagnosis (NCI)
Type
Intramural Research (Z01)
Project #
1Z01CB008341-08
Application #
3963007
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
1986
Total Cost
Indirect Cost
Name
Cancer Biology and Diagnosis
Department
Type
DUNS #
City
State
Country
United States
Zip Code