Sickle cell disease is an autosomal recessive disorder and the most common genetic disease affecting African-Americans. Approximately 0.15% of African-Americans are homozygous for sickle cell disease, and 8% have sickle cell trait. Hemoglobin S polymerization leads to red cell rigidity, microvascular obstruction, inflammation, and end-organ ischemia-reperfusion injury and infarction. Our published data indicate that up to 50% of sickle cell patients have endothelial dysfunction due to impaired bioavailability of endogenous nitric oxide due in large part to scavenging of nitric oxide by cell-free plasma hemoglobin. These data suggest that therapies directed at restoring NO bioavailability might prove beneficial. We have recently discovered that the nitrite anion, available currently for human use as a component of the cyanide antidote kit, is a vasodilator in vivo by generating nitric oxide (NO) in tissues with lower oxygen tension and pH. The mechanism involves a novel physiological function of human hemoglobin as an oxygen- and pH dependent nitrite reductase. To date we have observed that nitrite infusions in animal models significantly reduce liver and cardiac ischemia-reperfusion injury and infarction in mouse models, prevent cerebral vasospasm after subarachnoid hemorrhage in primates, and decrease pulmonary hypertension in newborn hypoxic sheep. We have also observed that nitrite induces regional vasodialtion in healthy human subjects. The current protocol is designed as a phase I/II trial to address the hypothesis that nitrite infusions will vasodilate the circulation in patients with sickle cell disease at rest and during vaso-occlusive pain crisis, inactivate circulating cell-free plasma hemoglobin, reduce pulmonary artery pressures and reduce ischemia-reperfusion injury (measured by circulating markers of oxidant stress). We began enrolling patients in January 2005. We have enrolled 12 patients to date. We have completed studies on 7 patients in steady state and in 1 patient during vaso-occlusive pain crisis. The five remaining enrolled patients will complete steady state studies in the next few months. Vaso-occlusive crisis studies will be completed on these patients who have completed the steady state studies when they present to NIH in crisis. Formal data analysis will not be performed until 10 steady state studies have been completed, but preliminarily, nitrite has induced vasodilation and has improved nitroprusside vascular reactivity in every patient tested so far on this protocol.

Agency
National Institute of Health (NIH)
Institute
Clinical Center (CLC)
Type
Intramural Research (Z01)
Project #
1Z01CL008081-01
Application #
7215819
Study Section
(CCMD)
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
2005
Total Cost
Indirect Cost
Name
Clinical Center
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Mack, A Kyle; McGowan Ii, Vicki R; Tremonti, Carole K et al. (2008) Sodium nitrite promotes regional blood flow in patients with sickle cell disease: a phase I/II study. Br J Haematol 142:971-8