We have recently cloned five members of the murine CYP2C subfamily, expressed the recombinant P450 proteins in E. coli, and showed that they are active in the metabolism of arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs) and/or hydroxyeicosatetraenoic acids (HETEs), eicosanoids that possess potent biological activities in numerous tissues. Despite the fact that these enzymes are 69-92% identical at the amino acid level, they differ markedly in their catalytic turnover and each enzyme has a unique product profile. For example, CYP2C29 biosynthesizes 14,15-EET, CYP2C37 primarily makes 12-HETE, and CYP2C40 produces 16-HETE. Moreover, the murine CYP2C enzymes produce EETs in a highly regio- and stereoselective fashion. RT-PCR and immunoblot data indicate that the mouse CYP2C mRNAs and proteins are abundant in both hepatic and extrahepatic tissues, and that the tissue distribution is P450 isoform-specific. Interestingly, the CYP2C proteins are present in high concentrations in the lung and intestine. We have recently identified the major CYP2C isoform in lung (CYP2C29) and colon (CYP2C40) by sequencing PCR products generated using universal primers. The cellular localization of CYP2C29 and CYP2C40 within lung and intestine, respectively, provide further clues regarding the functional role of these enzymes in these tissues. We will develop in vitro systems to study the effects of CYP2C overexpression on lung and intestinal cell function. The CYP2C29 and CYP2C40 cDNAs will be transfected into cultured mouse lung and intestinal cell lines, respectively, to examine effects on parameters such as ion transport, cellular proliferation and apoptosis. Finally, we will generate mice that lack the Cyp2c29 gene. This P450 was chosen because of its tissue distribution and the known biological effects of its major product, 14,15-EET, in the lung.
Showing the most recent 10 out of 35 publications