Parkinson's disease (PD) is a progressive movement disorder affecting over 500,000 US residents. The etiology of PD is still unclear. A recent twin study suggested that no highly penetrant gene was involved. Genetic susceptibility to environmental exposures may still play a role: PD has been linked to polymorphisms in several genes, typically involving dopamine neurochemistry or detoxification of xenobiotics. The etiology of PD likely has an environmental component. Epidemiologic studies have demonstrated that PD risk is associated with rural living, well water drinking, farming, pesticides, and metals. In particular, several although not all studies have shown that pesticide exposure is associated with increased PD risk. PD risk has also been associated with exposure to metals and with age, diet, and lifestyle factors including cigarette smoking, which is protective. An interesting potential risk factor is the soil pathogen Nocardia asteroides. This mycobacterium causes nigral degeneration and an L-dopa responsive movement disorder in mice and monkeys. Exposure to Nocardia might present an explanation for the risk associated with rural living and farming, but human studies of PD and Nocardia exposure have been inconclusive. Epidemiologic and experimental evidence indicates that the pathophysiology of PD likely involves several interacting mechanisms, including mitochondrial dysfunction, oxidative stress, and protein aggregation, and that environmental neurotoxicants work through these pathways. We are conducting a case-control study of PD nested in the Agricultural Health Study (AHS) in collaboration with Dr Caroline Tanner of the Parkinson's Institute. (Please see the AHS annual report for a description on the cohort study.) Specific aims are to examine the relationship of PD (i) to pesticide exposure; (ii) to other neurotoxicants, particularly metals; (iii) to Nocardia asteroides; (iv) to lifestyle factors including diet, smoking, and caffeine; (v) to skin melanin, to examine racial/ethnic differences; and (vi) to polymorphisms in genes involved in xenobiotic metabolism, dopaminergic neurotransmission, or xenobiotic-specific membrane transport. This study is the first to use prospectively collected exposure information to evaluate the hypothesis that pesticide exposure is related to PD risk. It exploits the unique opportunity provided by the AHS to address this issue in an occupational group defined by pesticide use, combining rigorous methods of case-finding with several complementary methods of exposure assessment. Progress: Field work for the case-control study is in progress. Presently we have enrolled 46 cases and 181 controls; ultimately we will enroll ~160 PD cases and ~480 controls. Suspect cases are identified using information from the AHS, and the presence of PD is verified using an in-home neurologic exam and medical records. Controls are a random sample from the remaining cohort, matched to cases by age, sex, and state. Exposure is evaluated using data from three complementary sources. We utilize interview information on pesticide use, other exposures, and lifestyle already collected in the AHS. In addition, we collect blood samples to measure organochlorines, metals, and Nocardia exposure and for DNA banking. We collect samples of house and farm equipment dust to measure certain pesticides and metals. We also conduct additional interviews to obtain information on lifetime use of specific pesticides implicated in PD by case reports or animal research as well as exposure to other neurotoxicants.
Showing the most recent 10 out of 13 publications