IRP1 is an iron-sulfur protein related to mitochondrial aconitase, a citric acid cycle enzyme, and it functions as a cytosolic aconitase in cells that are iron replete. Regulation of RNA binding activity of IRP1 involves a transition from a form of IRP1 in which a 4Fe-4S cluster is bound, to a form that loses both iron and aconitase activity. The 4Fe-4S containing protein does not bind IREs. Controlled degradation of the iron-sulfur cluster and mutagenesis reveals that the physiologically relevant form of the RNA binding protein in iron-depleted cells is apoprotein. The status of the cluster appears to determine whether IRP1 will bind RNA. Recently, we have identified mammalian enzymes of iron-sulfur cluster assembly that are homologous to the NifS, ISCU and Nif U genes implicated in bacterial iron-sulfur cluster assembly, and we have shown that these gene products facilitate assembly of the iron- sulfur cluster of IRP1. We have discovered that frataxin transcription is iron-dependently regulated and frataxin expression decreases when there is cytosolic iron deficiency in wild-type and in fibroblasts and lymphoblasts from Friedreich ataxia patients. We discovered that a mutation in the scaffold protein, ISCU, causes a rare myopathy. In both Friedreich ataxia and ISCU myopathy, our data indicate that mitochondrial iron overload occurs in conjunction with cytosolic iron depletion. We predict that other rare genetic diseases characterized by mitochondrial compromise will be caused by mutations in the genes responsible for iron-sulfur cluster biogenesis.