Using probes generated by chromosome microdissection and fluorescence in situ hybridization, we have identified a series of chromosomal regions involved in amplification events not previously recognized in human breast, ovarian and prostate cancer. In addition, it has been possible to determine the complex structure of homogeneously staining regions in several cases establishing that these structures are frequently composed of DNA segments derived from multiple chromosomes and intermingled to form an abnormal region. In order to isolate candidate target genes from these regions, we have developed a technique based on microdissection-mediated hybrid-selection of cDNAs. This technology, which supplements standard positional cloning techniques, has been utilized to isolate candidate genes from amplified regions on chromosome 13, 17 and 20 in breast cancer, as well as chromosome 12 in sarcomas. In addition, microdissection probes have been used to evaluate clinical material for the presence of gene amplification by FISH in prostate cancer and sarcomas. The methodology previously described illustrates the importance of developing rapid techniques for the identification of genes amplified in a series of key human tumors. In addition to recognizing known sites of gene amplification, we have identified several previously unidentified genes amplified in breast, prostate and ovarian cancers. These genes will be utilized to determine clinical significance of gene amplification in various malignancies. It appears highly likely that important new information will be discovered relative to genes playing a causal role in disease genesis or progression.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Intramural Research (Z01)
Project #
1Z01HG000037-02
Application #
2576543
Study Section
Special Emphasis Panel (LCG)
Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
1996
Total Cost
Indirect Cost
Name
National Human Genome Research Institute
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Wang, Qi; Anzick, Sarah; Richter, William F et al. (2004) Modulation of transcriptional sensitivity of mineralocorticoid and estrogen receptors. J Steroid Biochem Mol Biol 91:197-210
Goo, Young-Hwa; Sohn, Young Chang; Kim, Dae-Hwan et al. (2003) Activating signal cointegrator 2 belongs to a novel steady-state complex that contains a subset of trithorax group proteins. Mol Cell Biol 23:140-9
Helman, Lee J; Meltzer, Paul (2003) Mechanisms of sarcoma development. Nat Rev Cancer 3:685-94
Borden, Ernest C; Baker, Laurence H; Bell, Robert S et al. (2003) Soft tissue sarcomas of adults: state of the translational science. Clin Cancer Res 9:1941-56
Anzick, Sarah L; Azorsa, David O; Simons Jr, S Stoney et al. (2003) Phenotypic alterations in breast cancer cells overexpressing the nuclear receptor co-activator AIB1. BMC Cancer 3:22
Hedenfalk, Ingrid; Ringner, Markus; Ben-Dor, Amir et al. (2003) Molecular classification of familial non-BRCA1/BRCA2 breast cancer. Proc Natl Acad Sci U S A 100:2532-7
Pollock, Pamela M; Cohen-Solal, Karine; Sood, Raman et al. (2003) Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nat Genet 34:108-12
Gorlick, Richard; Anderson, Peter; Andrulis, Irene et al. (2003) Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary. Clin Cancer Res 9:5442-53
Forozan, F; Veldman, R; Ammerman, C A et al. (1999) Molecular cytogenetic analysis of 11 new breast cancer cell lines. Br J Cancer 81:1328-34