I. PATHOGNESIS OF CEREBRAL ISCHEMIA: The discovery of ET-1 and NO has greatly contributed to our understanding of the functional changes of many organs under physiological and pathological conditions (e.g., hypertension, atherosclerosis, and stroke). Previous studies focused on interactions of endocannabinoids [2-arachidonoylglycerol (2-AG) and anandamide (ANA) with the vasoconstrictor, endothelin-1 (ET-1). Both 2-AG and ANA are produced in various organs (brain,gut) and cell [monocytes, platelets, endothelial cells (EC)]; they elicit neuromodulator, cytoprotective (i.e., brain ischemia and trauma) and cardiovascular effects, which are mediated through cannabinoid (CB) receptors CB1, CB2 or vanilloid (VR1) receptors. Recently, it has been shown that 2-AG may act as an antioxidant since it suppressed the endotoxin-induced production of TNFalpha. Reactive oxygen species (ROS) were shown to play a role in altering blood-brain barrier (BBB) permeability and formation of brain edema induced by trauma and/or ischemia. Interestingly, 2-AG antioxidant properties have also been implicated to contribute to the improvement of BBB injury and edema formation induced by closed head injury (CHI). The latest in vivo and in vitro studies focus on investigating 1) the possible 2-AG modulation of BBB injury and edema formation induced by closed head injury (CHI); and 2) comparable effects between 2-AG and 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TPL), a known antioxidant nitroxide on endothelial Ca2+ and cytoskeletal responses to H2O2 (ROS). 2-AG treatment reduced the CHI-induced increase in BBB permeability and brain edema. The endothelial H2O2-stimulated Ca2+ mobilization and cytoskeleton (vimentin) rearrangement was modified by either 2-AG or TPL. These findings provide evidence of 2-AG antioxidant activity and are consistent with the involvement of ROS in the pathomechanism of CHI-induced BBB injury and brain edema. Further in vivo and in vitro experiments underway are involved with elucidating the signal transduction mechanisms responsible for the antioxidative properties of 2-AG and alternations of cytoskeleton. II. TOLERANCE TO CEREBRAL ISCHEMIA: The study of SHR-SP tolerization with E-selectin (in collaboration with Dr. J. Hallenbeck) demonstrated a reduced incidence and size of brain infarct and hemorrhage. The latest studies demonstrated that mucosal tolerization renders cell-mediated protection against cerebral damage (stroke). Continued investigation is focused on the mechamism involved in the observed above mentioned phenomena tolerized SHR-SP animals as compared to the Naive rats and whether the E-selectin-induced tolerization against brain injury in SHR-SP rats also effect peripheral organs (i.e., heart and kidneys). In addition, a new initiative for stroke prevention (induction of mucosal tolerance to E-selectin) involves a preclinical study with spontaneously hypertensive, genetically stroke-prone rats and an approved Phase II A Clinical Trial

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Intramural Research (Z01)
Project #
1Z01NS002933-07
Application #
6843019
Study Section
Surgery and Bioengineering Study Section (SB)
Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
2003
Total Cost
Indirect Cost
City
State
Country
United States
Zip Code
Golech, Susanne Andrea; McCarron, Richard M; Chen, Ye et al. (2004) Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors. Brain Res Mol Brain Res 132:87-92
Takeda, H; Spatz, M; Ruetzler, C et al. (2004) Induction of mucosal tolerance to E-selectin targets immunomodulation to activating vessel segments and prevents ischemic and hemorrhagic stroke. Ernst Schering Res Found Workshop :117-32
Chen, Y; McCarron, R M; Golech, S et al. (2003) ET-1- and NO-mediated signal transduction pathway in human brain capillary endothelial cells. Am J Physiol Cell Physiol 284:C243-9
Chen, Yong; Ruetzler, Christl; Pandipati, Sruthi et al. (2003) Mucosal tolerance to E-selectin provides cell-mediated protection against ischemic brain injury. Proc Natl Acad Sci U S A 100:15107-12
Yu, Zhao-Ying; Ono, Shinsuke; Spatz, Maria et al. (2002) Effect of hemorrhagic shock on apoptosis and energy-dependent efflux system in the brain. Neurochem Res 27:1625-32
Chen, Y; McCarron, R M; Ohara, Y et al. (2000) Human brain capillary endothelium: 2-arachidonoglycerol (endocannabinoid) interacts with endothelin-1. Circ Res 87:323-7
Liu, J; Ginis, I; Spatz, M et al. (2000) Hypoxic preconditioning protects cultured neurons against hypoxic stress via TNF-alpha and ceramide. Am J Physiol Cell Physiol 278:C144-53
Ginis, I; Schweizer, U; Brenner, M et al. (1999) TNF-alpha pretreatment prevents subsequent activation of cultured brain cells with TNF-alpha and hypoxia via ceramide. Am J Physiol 276:C1171-83
Dawson, D A; Sugano, H; McCarron, R M et al. (1999) Endothelin receptor antagonist preserves microvascular perfusion and reduces ischemic brain damage following permanent focal ischemia. Neurochem Res 24:1499-505