The working hypothesis of our laboratory remains there is a convergence of prosurvival, angiogenesis and motility signals at common pathways in the local tumor microenvironment and thus these events can be efficiently targeted therapeutically. We have turned our focus to two pathways identified in our previous studies: function of the CAIR-1/BAG-3 stress chaperone protein and progranulin (GEP) growth and invasion factor for ovarian cancer. We just reported that BAG-3 has a protective effect on cell stress by abrogating proteosomal degradation of polyubiquitinated client proteins under geldanamycin drive, dependent upon presence of the BAG domain and thus interaction with Hsp70. In the process, we identified two potential mechanisms of regulation of BAG-3 stability. Ongoing work also is dissecting the partner proteins in BAG-3 downregulation of adhesion, motility, and cytoskeletal reorganization in malignant cells. Lastly, clinical correlative studies using immunohistochemistry are ongoing to assess the role of CAIR-1 expression in epithelial ovarian and endometrial cancers. Our work in ovarian cancer identified GEP as a growth and survival factor. Current results indicate that GEP production is regulated by pathways activated by G protein-coupled growth factors known to be active in ovarian cancer, LPA and endothelin through a cAMP/EPAC/MAPK pathway. Downregulation of GEP with neutralizing antibodies causes apoptosis of ovarian cancer cells. Production of GEP and its subsequent activity may be part of a signal amplification cascade in ovarian cancer and is a logical target for molecular therapeutics. A biotechnology collaboration has been initiated for molecular therapeutics targeting GEP. Clinical assessment showed a link between GEP expression in ovarian cancer malignant effusions and patient outcome. Thus, GEP and BAG-3 each have potential as molecular therapeutic targets in ovarian cancer and other solid tumors.

Agency
National Institute of Health (NIH)
Institute
Division of Clinical Sciences - NCI (NCI)
Type
Intramural Research (Z01)
Project #
1Z01SC009163-17
Application #
7068848
Study Section
(LP)
Project Start
Project End
Budget Start
Budget End
Support Year
17
Fiscal Year
2004
Total Cost
Indirect Cost
Name
Clinical Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Rasool, Nabila; LaRochelle, William; Zhong, Haihong et al. (2010) Secretory leukocyte protease inhibitor antagonizes paclitaxel in ovarian cancer cells. Clin Cancer Res 16:600-9
Kassis, Jareer N; Virador, Victoria M; Guancial, Elizabeth A et al. (2009) Genomic and phenotypic analysis reveals a key role for CCN1 (CYR61) in BAG3-modulated adhesion and invasion. J Pathol 218:495-504
Virador, Victoria M; Davidson, Ben; Czechowicz, Josephine et al. (2009) The anti-apoptotic activity of BAG3 is restricted by caspases and the proteasome. PLoS One 4:e5136
Elstrand, Mari Bunkholt; Kleinberg, Lilach; Kohn, Elise C et al. (2009) Expression and clinical role of antiapoptotic proteins of the bag, heat shock, and Bcl-2 families in effusions, primary tumors, and solid metastases in ovarian carcinoma. Int J Gynecol Pathol 28:211-21
Gunn, Andrew J; Hama, Yukihiro; Koyama, Yoshinori et al. (2007) Targeted optical fluorescence imaging of human ovarian adenocarcinoma using a galactosyl serum albumin-conjugated fluorophore. Cancer Sci 98:1727-33
Davidson, Ben; Espina, Virginia; Steinberg, Seth M et al. (2006) Proteomic analysis of malignant ovarian cancer effusions as a tool for biologic and prognostic profiling. Clin Cancer Res 12:791-9
Kassis, Jareer N; Guancial, Elizabeth A; Doong, Howard et al. (2006) CAIR-1/BAG-3 modulates cell adhesion and migration by downregulating activity of focal adhesion proteins. Exp Cell Res 312:2962-71
Kassis, Jareer; Klominek, Julius; Kohn, Elise C (2005) Tumor microenvironment: what can effusions teach us? Diagn Cytopathol 33:316-9
Kamrava, Mitchell; Simpkins, Fiona; Alejandro, Emilyn et al. (2005) Lysophosphatidic acid and endothelin-induced proliferation of ovarian cancer cell lines is mitigated by neutralization of granulin-epithelin precursor (GEP), a prosurvival factor for ovarian cancer. Oncogene 24:7084-93
Perabo, Frank G E; Demant, Andre W; Wirger, Andreas et al. (2005) Carboxyamido-triazole (CAI) reverses the balance between proliferation and apoptosis in a rat bladder cancer model. Anticancer Res 25:725-9

Showing the most recent 10 out of 22 publications