The variability in the prognosis of individuals with hepatocellular carcinoma (HCC) suggests that HCC may comprise several distinct biological phenotypes. These phenotypes may result from activation of different oncogenic pathways during tumorigenesis and/or from a different cell of origin. We have address whether the transcriptional characteristics of HCC can provide insight into the cellular origin of the tumor. We integrated gene expression data from rat fetal hepatoblasts and adult hepatocytes with HCC from human and mouse models. Individuals with HCC who shared a gene expression pattern with fetal hepatoblasts had a poor prognosis. The gene expression program that distinguished this subtype from other types of HCC included markers of hepatic oval cells, suggesting that HCC of this subtype may arise from hepatic progenitor cells. Analyses of gene networks showed that activation of AP-1 transcription factors in this newly identified HCC subtype might have key roles in tumor development.In this work we have shown that by applying two independent gene expression signatures, we were able to divide individuals with HCC into three subgroups characterized by statistically significant differences in clinical outcome. These findings support the notion that multiple molecular pathways dictate the development and different clinical outcomes of HCC. Our finding also indicates that the molecular features of HCC such as prognostic gene expression signatures are present at the time of diagnosis. Therefore, the use of gene expression profiling promises to improve molecular classification and prediction of outcomes in HCC. Furthermore, molecular stratification of individuals with HCC into homogeneous subgroups may provide opportunities for the development of new treatment modalities.

Agency
National Institute of Health (NIH)
Institute
Division of Clinical Sciences - NCI (NCI)
Type
Intramural Research (Z01)
Project #
1Z01SC010385-07
Application #
7331711
Study Section
(LEC)
Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
2006
Total Cost
Indirect Cost
Name
Clinical Sciences
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Kremer-Tal, Sigal; Narla, Goutham; Chen, Yingbei et al. (2007) Downregulation of KLF6 is an early event in hepatocarcinogenesis, and stimulates proliferation while reducing differentiation. J Hepatol 46:645-54
Kaposi-Novak, Pal; Lee, Ju-Seog; Gomez-Quiroz, Luis et al. (2006) Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest 116:1582-95
Thorgeirsson, Snorri S; Lee, Ju-Seog; Grisham, Joe W (2006) Molecular prognostication of liver cancer: end of the beginning. J Hepatol 44:798-805
Lee, Ju-Seog; Heo, Jeonghoon; Libbrecht, Louis et al. (2006) A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 12:410-6
Thorgeirsson, Snorri S; Lee, Ju-Seog; Grisham, Joe W (2006) Functional genomics of hepatocellular carcinoma. Hepatology 43:S145-50
Martin, Juliette; Magnino, Fabrice; Schmidt, Karin et al. (2006) Hint2, a mitochondrial apoptotic sensitizer down-regulated in hepatocellular carcinoma. Gastroenterology 130:2179-88
Lee, J-S; Thorgeirsson, S S (2006) Comparative and integrative functional genomics of HCC. Oncogene 25:3801-9
Calvisi, Diego F; Ladu, Sara; Gorden, Alexis et al. (2006) Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 130:1117-28
Calvisi, Diego F; Conner, Elizabeth A; Ladu, Sara et al. (2005) Activation of the canonical Wnt/beta-catenin pathway confers growth advantages in c-Myc/E2F1 transgenic mouse model of liver cancer. J Hepatol 42:842-9
Pascale, Rosa M; Simile, Maria M; Calvisi, Diego F et al. (2005) Role of HSP90, CDC37, and CRM1 as modulators of P16(INK4A) activity in rat liver carcinogenesis and human liver cancer. Hepatology 42:1310-9

Showing the most recent 10 out of 13 publications