To analyze mitochondrial DNA variation and its possible effects on aging-related traits, the genotype-calling and analytic programs developed for nuclear DNA are not adequate, because each cell has 100-10,000 mtDNA copies that can vary at any site (heteroplasmy), and can therefore have each of the 4 bases at any position in various copies. We have developed an algorithm that is specific to identify variants in mtDNA;it incorporates the sequencing error rate of each base in each sequence read and has the flexibility to allow for different allele fractions at a variant site across all individuals. It has thus far been successful in determining homoplasmies in the mtDNA sequence from 300 individuals of a total of 2,000 sequenced;and especially because the Sardinian cohort is highly inter-related, we have been able to distinguish newly-arising variants in children compared to their mothers and other relatives. To take advantage of repeated visits, which can increase the accuracy of data and thereby provide more highly significant results with a given size sample, we have, instead of using the average of multiple measurements, developed an empirical Bayes shrinking estimator that summarizes the multiple measurements. Simulations and analysis of real data from the SardiNIA data set show that combining values from repeated visits in an association study yields an expected increase in the GWAS signals compared to using a single visit for measures of many traits at 3 visits over a 10-year period. Furthermore, we have showed that in unbalanced data sets (that is, with different individuals having different numbers of visits), the shrinking estimator further improves GWAS signals relative to the average.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAAG000693-01
Application #
8335894
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
2011
Total Cost
$387,629
Indirect Cost
Name
National Institute on Aging
Department
Type
DUNS #
City
State
Country
Zip Code
Moore, Ann Zenobia; Ding, Jun; Tuke, Marcus A et al. (2018) Influence of cell distribution and diabetes status on the association between mitochondrial DNA copy number and aging phenotypes in the InCHIANTI study. Aging Cell 17:
Qian, Yong; Butler, Thomas J; Opsahl-Ong, Krista et al. (2017) fastMitoCalc: an ultra-fast program to estimate mitochondrial DNA copy number from whole-genome sequences. Bioinformatics 33:1399-1401
Okbay, Aysu (see original citation for additional authors) (2016) Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533:539-42
van den Berg, Stéphanie M; de Moor, Marleen H M; Verweij, Karin J H et al. (2016) Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium. Behav Genet 46:170-82
Okbay, Aysu; Baselmans, Bart M L; De Neve, Jan-Emmanuel et al. (2016) Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat Genet 48:624-33
Ding, Jun; Sidore, Carlo; Butler, Thomas J et al. (2015) Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools. PLoS Genet 11:e1005306
Terracciano, Antonio; Strait, James; Scuteri, Angelo et al. (2014) Personality traits and circadian blood pressure patterns: a 7-year prospective study. Psychosom Med 76:237-43
Hek, Karin; Demirkan, Ayse; Lahti, Jari et al. (2013) A genome-wide association study of depressive symptoms. Biol Psychiatry 73:667-78
Meirelles, Osorio D; Ding, Jun; Tanaka, Toshiko et al. (2013) SHAVE: shrinkage estimator measured for multiple visits increases power in GWAS of quantitative traits. Eur J Hum Genet 21:673-9
Pelosi, Emanuele; Omari, Shakib; Michel, Marc et al. (2013) Constitutively active Foxo3 in oocytes preserves ovarian reserve in mice. Nat Commun 4:1843

Showing the most recent 10 out of 14 publications