In sinoatrial node cells (SANC), Ca2+ activates adenylate cyclase (AC) to generate a high basal level of cAMP-mediated/protein kinase A (PKA)-dependent phosphorylation of Ca2+ cycling proteins. These result in spontaneous sarcoplasmic reticulum (SR)-generated rhythmic Ca2+ oscillations during diastolic depolarization that not only trigger the surface membrane to generate rhythmic action potentials (APs), but, in a feed-forward manner, also activate AC/PKA signaling. ATP is consumed to pump Ca2+ to the SR, to produce cAMP, to support contraction and to maintain cell ionic homeostasis. Since feedback mechanisms link ATP-demand to ATP production, we hypothesized that (1) both basal ATP supply and demand in SANC would be Ca2+-cAMP/PKA dependent;and (2) due to its feed-forward nature, a decrease in flux through the Ca2+-cAMP/PKA signaling axis will reduce the basal ATP production rate. SANC possess a high mitochondrial density, similar to other heart tissues. O2 consumption in spontaneous beating SANC was comparable to ventricular myocytes (VM) stimulated at 3 Hz. Graded reduction of basal Ca2+-cAMP/PKA signaling to reduce ATP demand in rabbit SANC produced graded ATP depletion (r2=0.96), and reduced O2 consumption and flavoprotein fluorescence. In contrast to SANC, reductions in ATP demand in VM do not appreciably change the steady ATP levels. Neither inhibition of glycolysis, selectively blocking contraction nor specific inhibition of mitochondrial Ca2+ flux reduced the ATP level. We can conclude that feed-forward basal Ca2+-cAMP/PKA signaling both consumes ATP to drive spontaneous APs in SANC and is tightly linked to mitochondrial ATP production. Interfering with Ca2+-cAMP/PKA signaling not only slows the firing rate and reduces ATP consumption, but also appears to reduce ATP production so that ATP levels fall. This distinctly differs from VM, which lack this feed-forward basal cAMP/PKA signaling, and in which ATP level remains constant when the demand changes.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAAG000874-03
Application #
8335947
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2011
Total Cost
$220,553
Indirect Cost
Name
National Institute on Aging
Department
Type
DUNS #
City
State
Country
Zip Code
Maltsev, Victor A; Yaniv, Yael; Maltsev, Anna V et al. (2014) Modern perspectives on numerical modeling of cardiac pacemaker cell. J Pharmacol Sci 125:6-38
Yaniv, Yael; Spurgeon, Harold A; Ziman, Bruce D et al. (2013) Ca²+/calmodulin-dependent protein kinase II (CaMKII) activity and sinoatrial nodal pacemaker cell energetics. PLoS One 8:e57079
Yaniv, Yael; Spurgeon, Harold A; Ziman, Bruce D et al. (2013) Mechanisms that match ATP supply to demand in cardiac pacemaker cells during high ATP demand. Am J Physiol Heart Circ Physiol 304:H1428-38
Yaniv, Yael; Juhaszova, Magdalena; Sollott, Steven J (2013) Age-related changes of myocardial ATP supply and demand mechanisms. Trends Endocrinol Metab 24:495-505
Yaniv, Yael; Juhaszova, Magdalena; Lyashkov, Alexey E et al. (2011) Ca2+-regulated-cAMP/PKA signaling in cardiac pacemaker cells links ATP supply to demand. J Mol Cell Cardiol 51:740-8
Yaniv, Yael; Juhaszova, Magdalena; Nuss, H Bradley et al. (2010) Matching ATP supply and demand in mammalian heart: in vivo, in vitro, and in silico perspectives. Ann N Y Acad Sci 1188:133-42
Vinogradova, Tatiana M; Lakatta, Edward G (2009) Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP-mediated PKA-dependent Ca2+ cycling with surface membrane channels. J Mol Cell Cardiol 47:456-74