Francisella tularensis (FT), the causative agent for tularemia, can infect humans by a number of routes, including vector-borne transmission. However, it is inhalation of the bacterium, and the resulting pneumonic tularemia, that represents the most dangerous form of disease. This is due to the short incubation time (3-5 days), non-specific symptoms, and a high mortality rate (greater than 80%) in untreated individuals. Furthermore, FT has been weaponized by both the United States and the former Soviet Union making it a viable candidate for use as a biological weapon. Despite over 80 years of research on FT around the world, very little is understood about the dynamic interaction of this bacterium with the host, especially following aerosol infection. My laboratory has established that, similarly to murine cells, human dendritic cells and macrophages are acutely susceptible to infection with FT, but fail to produce pro-inflammatory cytokines or undergo maturation. Further, virulent FT actively interferes with the ability of human DC and macrophages to respond to secondary stimuli. Understanding the mechanism by which FT actively suppresses DC and macrophage function is a central directive of my laboratory. We are tackling this directive in two different ways.
Specific Aim 1 : We are analyzing the role Francisella lipids play in mediating anti-inflammatory responses. Structures present on the surface of bacteria are the first components encountered by the host cell. Thus, it is possible that, in the context of FT infections, these structures contribute to the early, rapid suppression of human dendritic cells. Bacterial lipids represent one such structure. We have recently identified one of the active lipid species present in FT that inhibit inflammation. We have tested a synthetic version of this lipid and confirmed that it also impairs inflammatory responses. We have identified one of the receptors utilized by both the intact bacterium and purified lipid as well as a host signaling molecule required to promote immunosuppressive responses. Importantly, we have also demonstrated that FT lipids can limit pathogenic inflammatory responses driven by other infectious agents in vitro, including Zika virus. We have screened FT lipids (including synthetic liposomes) for off target effects in vivo following delivery via multiple routes and are preparing to examine their efficacy against viral mediated inflammation in vivo. We have filed a patent application for use of FT lipids as novel anti-inflammatory therapeutics. We are currently identifying the other lipids present in FT that contribute to suppression of inflammation and additional mechanisms by which they interfere with functions in human cell.
Specific Aim 2 : We are exploring the role of carbohydrates associated with the outer surface of FT in directing immunosuppressive programs in human cells. The major outer surface carbohydrate structure of FT is the O-Antigen (O-Ag) capsule. Typically capsules are thought to simply cover up proteins present on the bacterial surface that could stimulate an inflammatory response. However, our data demonstrates that FT capsule directly inhibits pro-inflammatory responses in human cells. Utilizing mutants with specific defects in capsule synthesis along with purified FT capsule, we are currently identifying the specific receptors and host signaling pathways modulated by capsule to initiate an anti-inflammatory program in human cells.
Specific Aim 3 : We have established a plan to screen pools of nave human T cells with the company ProImmune who possesses unique protocols, techniques and capabilities to perform these assays. We are in the process of identifying immunodominate antigens to be targeted in these assays by screening the immune response among animals which have survived virulent F. tularensis infection.

Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Niaid Extramural Activities
Department
Type
DUNS #
City
State
Country
Zip Code
Ireland, Robin; Schwarz, Benjamin; Nardone, Glenn et al. (2018) Unique Francisella Phosphatidylethanolamine Acts as a Potent Anti-Inflammatory Lipid. J Innate Immun :1-15
Ireland, Robin; Wang, Rong; Alinger, Joshua B et al. (2013) Francisella tularensis SchuS4 and SchuS4 lipids inhibit IL-12p40 in primary human dendritic cells by inhibition of IRF1 and IRF8. J Immunol 191:1276-86
Crane, Deborah D; Ireland, Robin; Alinger, Joshua B et al. (2013) Lipids derived from virulent Francisella tularensis broadly inhibit pulmonary inflammation via TLR2 and PPARýý1. Clin Vaccine Immunol :
Bosio, Catharine M (2011) The subversion of the immune system by francisella tularensis. Front Microbiol 2:9
Bauler, Timothy J; Chase, Jennifer C; Bosio, Catharine M (2011) IFN-? mediates suppression of IL-12p40 in human dendritic cells following infection with virulent Francisella tularensis. J Immunol 187:1845-55
Chase, Jennifer C; Celli, Jean; Bosio, Catharine M (2009) Direct and indirect impairment of human dendritic cell function by virulent Francisella tularensis Schu S4. Infect Immun 77:180-95