Leptospirosis is a global, zoonotic disease caused by members of the genus Leptospira. Although widespread and sometimes fatal, leptospirosis is considered a neglected and understudied disease. The causative agent of Leptospirosis was first identified over 100 years ago, but the slow in vitro growth rate and limited genetic tools available to manipulate the genome of this spirochete have hampered the identification of virulence factors and development of a vaccine. Leptospires can be broadly divided into two groups: free-living saprophytes and infectious pathogens. The most widely used and studied species are L. biflexa (a non-pathogenic saprophyte) and L. interrogans (a pathogen). However, the nonpathogenic L. biflexa is more easily cultivated and more amenable to genetic manipulation than the pathogenic L. interrogans. Therefore, we have focused on L. biflexa as a model to understand the genus as a whole, to develop new techniques, and as a heterologous host to express pathogen-specific genes in order to characterize their function. Targeted gene inactivation, shuttle vector transformation, and transposon mutagenesis have all been successfully used in L. biflexa. To date, there are few published reports of targeted gene inactivations in L. interrogans. Transposon mutagenesis can be applied to L. interrogans but it functions at such a low efficiency that it cannot be utilized for any broad applications, such as auxotrophic screens or signature tagged mutagenesis. Since L. biflexa has a better transformation frequency than other species, we plan to optimize new techniques in this organism. In FY2017 we completed a study of the contribution of a bactofilin protein to the morphology and motility of L. biflexa (Jackson et al. Mol. Microbiol. Submitted). This project identified a family of bactofilin proteins conserved throughout the Leptospira genus, indicating that these proteins arose early in the evolution of this family. One member of this protein family, LbbD, confers the optimal pitch distance in the helical structure of L. biflexa. Mutants lacking lbbD display a unique compressed helical morphology, a reduced motility, and a decreased ability to tolerate cell wall stressors. The change in the helical spacing combined with the motility and cell wall integrity defects showcases the intimate relationship and coevolution between shape and motility in these spirochetes. This work was completed in collaboration with Cindi Schwartz of the Research Technologies Branch, NIAID. Ongoing research on the peptidoglycan sacculus of wild type and LbbD mutant L. biflexa strains are being conducted in collaboration with Dr. Kelsi Sandoz (Laboratory of Bacteriology, NIAID) and Dr. Vinod Nair (Research Technologies Branch, NIAID). We believe that identifying and characterizing the factors that contribute to morphology in Leptospira spp. should aid in understanding the basic cellular physiology of these organisms and identify factors that may limit their ability to infect and disseminate in mammalian hosts. CRISPR/Cas systems are bacterial adaptive immune systems that target and degrade foreign DNA and in FY2017 we continued to evaluate the influence of the endogenous L. interrogans CRISPR/Cas system on the transformation efficiency of this organism. We hypothesize that it may contribute to the lower transformation frequency observed in the pathogenic spp. relative to the saprophytes. We have analyzed the 21 complete Leptospira genomes available in the NCBI database and found that the CRISPR/Cas systems are primarily encoded in the pathogenic spp. (e.g. L. interrogans) and largely absent from the saprophytic ones (e.g. L. biflexa). Currently, we are attempting to inactivate specific cas genes in L. interrogans, monitor protein levels under different environmental conditions to assess which cues may induce the system, and express the entire operon in L. biflexa to test its effect on transformation frequency in a saprophyte. The long-term objective of this project is to use the improved tools and techniques to understand the basic physiology of leptospires and the mechanisms of infection and pathogenicity of L. interrogans. Together this knowledge should help accelerate the development of preventative measures against Leptospirosis.

Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Niaid Extramural Activities
Department
Type
DUNS #
City
State
Country
Zip Code
Jackson, Katrina M; Schwartz, Cindi; Wachter, Jenny et al. (2018) A widely conserved bacterial cytoskeletal component influences unique helical shape and motility of the spirochete Leptospira biflexa. Mol Microbiol 108:77-89
Stewart, Philip E; Carroll, James A; Olano, L Rennee et al. (2016) Multiple Posttranslational Modifications of Leptospira biflexa Proteins as Revealed by Proteomic Analysis. Appl Environ Microbiol 82:1183-95
Stewart, Philip E; Carroll, James A; Dorward, David W et al. (2012) Characterization of the Bat proteins in the oxidative stress response of Leptospira biflexa. BMC Microbiol 12:290