Vaccine-induced cellular immunity can control viral replication in simian immunodeficiency virus (SIV)-infected monkeys, though the level and persistence of viral control is not optimal. We previously demonstrated that immunization of monkeys with plasmid DNA followed by replication defective adenoviral vectors encoding SIV proteins led to a reduction in viremia and prolonged survival. This survival was associated with preserved central memory CD4+ T lymphocytes and could be predicted by the magnitude of the vaccine-induced cellular immune response. These immune correlates of vaccine efficacy should guide the evaluation of AIDS vaccines in humans. In addition, the results of the this study indicated that set point viral load and total CD4+ T lymphocyte count may not be fully predictive of a vaccine effect. The studies described above used a combination of several SIV antigens: Env, Gag and Pol. In an ongoing study, we immunized monkeys with this same combination, or with Env alone, or Gag-Pol alone, to determine the individual effect of each vaccine immunogen. The results indicate that both Gag-Pol and Env contribute to a protective effect on viral load and that these effects are most likely T-cell mediated. The combination of Env plus Gag-Pol worked better than either alone. Other ongoing studies will test the effect of several alternative serotypes of recombinant adenovirus In addition, we are currently performing studies to develop a low dose mucosal challenge model for SIV - which may be a more physiological model of human HIV infection The preliminary data from these studies shows that vaccine induced immunity can lower the change of infection. And extensive analysis of these data, including an analysis of immune correlates of infection, are ongoing.

Project Start
Project End
Budget Start
Budget End
Support Year
10
Fiscal Year
2011
Total Cost
$330,801
Indirect Cost
City
State
Country
Zip Code
Hessell, Ann J; Jaworski, J Pablo; Epson, Erin et al. (2016) Early short-term treatment with neutralizing human monoclonal antibodies halts SHIV infection in infant macaques. Nat Med 22:362-8
Bolton, Diane L; Pegu, Amarendra; Wang, Keyun et al. (2016) Human Immunodeficiency Virus Type 1 Monoclonal Antibodies Suppress Acute Simian-Human Immunodeficiency Virus Viremia and Limit Seeding of Cell-Associated Viral Reservoirs. J Virol 90:1321-32
Gautam, Rajeev; Nishimura, Yoshiaki; Pegu, Amarendra et al. (2016) A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges. Nature 533:105-109
Saunders, Kevin O; Pegu, Amarendra; Georgiev, Ivelin S et al. (2015) Sustained Delivery of a Broadly Neutralizing Antibody in Nonhuman Primates Confers Long-Term Protection against Simian/Human Immunodeficiency Virus Infection. J Virol 89:5895-903
Ko, Sung-Youl; Pegu, Amarendra; Rudicell, Rebecca S et al. (2014) Enhanced neonatal Fc receptor function improves protection against primate SHIV infection. Nature 514:642-5
Rudicell, Rebecca S; Kwon, Young Do; Ko, Sung-Youl et al. (2014) Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J Virol 88:12669-82
Pegu, Amarendra; Yang, Zhi-yong; Boyington, Jeffrey C et al. (2014) Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor. Sci Transl Med 6:243ra88
Yeh, Wendy W; Brassard, Laura M; Miller, Caroline A et al. (2012) Envelope variable region 4 is the first target of neutralizing antibodies in early simian immunodeficiency virus mac251 infection of rhesus monkeys. J Virol 86:7052-9
Santra, Sampa; Muldoon, Mark; Watson, Sydeaka et al. (2012) Breadth of cellular and humoral immune responses elicited in rhesus monkeys by multi-valent mosaic and consensus immunogens. Virology 428:121-7
Flatz, Lukas; Cheng, Cheng; Wang, Lingshu et al. (2012) Gene-based vaccination with a mismatched envelope protects against simian immunodeficiency virus infection in nonhuman primates. J Virol 86:7760-70

Showing the most recent 10 out of 23 publications