Chronic generation of reactive nitrogen species (RNS) can cause DNA damage and may also directly modify DNA repair proteins. RNS-modified DNA is repaired predominantly by the base excision repair (BER) pathway, which includes the alkyladenine DNA glycosylase (AAG). The AAG active site contains several tyrosines and cysteines that are potential sites for modification by RNS. In vitro, we demonstrate that RNS differentially alter AAG activity depending on the site and type of modification. Nitration of tyrosine 162 impaired 1,N(6)-ethenoadenine (epsilonA)-excision activity, whereas nitrosation of cysteine 167 increased epsilonA excision. To understand the effects of RNS on BER in vivo, we examined intestinal adenomas for levels of inducible nitric oxide synthase (iNOS) and AAG. A striking correlation between AAG and iNOS expression was observed (r = 0.76, P = 0.00002). Interestingly, there was no correlation between changes in AAG levels and enzymatic activity. We found AAG to be nitrated in human adenomas, suggesting that this RNS modification is relevant in the human disease. Expression of key downstream components of BER, apurinic/apyrimidinic endonuclease 1 (APE1) and DNA polymerase beta (POLbeta), was also examined. POLbeta protein was increased in nearly all adenomas compared with adjacent non-tumor tissues, whereas APE1 expression was only increased in approximately half of the adenomas and also was relocalized to the cytoplasm in adenomas. Collectively, the results suggest that BER is dysregulated in colon adenomas. RNS-induced posttranslational modification of AAG is one mechanism of BER dysregulation, and the type of modification may define the role of AAG during carcinogenesis. Accumulating evidence suggests a role for inflammation in the development and progression of cancer. Our group recently identified a cytokine gene signature in lung tissue associated with lung cancer prognosis. Therefore, we hypothesized that concentrations of circulating cytokines in serum may be associated with lung cancer survival. Ten serum cytokines, namely interleukin (IL)-1beta, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, granulocyte macrophage colony-stimulating factor, interferon (IFN)-gamma, and tumor necrosis factor-alpha, were assessed in 353 non-small cell lung cancer cases from a case-control study of lung cancer in the greater Baltimore, Maryland area. Cytokines were measured using an ultrasensitive electrochemiluminescence immunoassay. IL-6 serum concentrations ( greater than or = 4.0 pg/mL) were associated with significantly poorer survival in both African Americans [hazard ratio (HR), 2.71;95% confidence interval (CI), 1.26 - 5.80] and Caucasians (HR, 1.71;95% CI, 1.22 - 2.40). IL-10 (HR, 2.62;95% CI, 1.33 -5.15) and IL-12 (HR, 1.98;95% CI, 1.14 - 3.44) were associated with lung cancer survival only in African Americans. Some evidence for an association of tumor necrosis factor-alpha leves with survival in Caucasians was observed, although these results were not significant. These hypothesis-generating findings indicate that selected serum cytokine concentrations are associated with lung cancer survival, and indicate that further research is warranted to better understand the mechanistic underpinnings of these associations.