In this study, we employ in vitro models to study the factors involved in the differentiation of pancreatic precursor cells into hormone-producing cells of the islets of Langerhans and their mechanisms of action with a goal to develop a system that could be used for cell replacement therapy for patients with diabetes mellitus. Development of the endocrine pancreas includes a series of early events wherein precursor cells migrate to form aggregates that subsequently differentiate into islets of Langerhans. We use cells derived from human cadaveric pancreata, human islet-derived precursor cells (hIPCs) and CD73/CD90/CD105-positive mesenchymal stem cells (+++MSCs), and a human pancreatic cancer cell line (PANC-1 cells) to study regulation of proliferation, cell migration and aggregation that precede differentiation and differentiation itself. 1) We have now demonstrated that hIPCs are pancreatic MSCs that can differentiate in vitro and in vivo into hormone-expressing cells of the endocrine pancreas. 2) We extended our initial observations that hIPCs exhibit epigenetic marks that are associated with both active and repressed gene transcription on the insulin gene even though they are not actively transcribing this gene. This type of bivalent modification has been associated with other types of stem cells and may represent a state of commitment for these stem cells to differentiate further to mature endocrine cells. 3) We showed that hIPCs can be transitioned from mesenchymal to epithelial to mesenchymal cell types depending upon the growth/differentiation factors present in the culture medium. These findings suggest that these transitions may occur in situ and be a mechanism for generation of new endocrine cells because the mesenchymal phenotype allows for enhanced proliferation and migration to form new islets. 4) We recently found that fibroblasts from human skin (dermal fibroblasts) can be induce to differentiate into hormone-producing cells. This novel finding will be followed in depth. If successful, these cells will allow us to use easily accessible cells as precursors for possible cell replacement therapy for patients with diabetes that would be non-immunogenic.

Project Start
Project End
Budget Start
Budget End
Support Year
10
Fiscal Year
2011
Total Cost
$411,625
Indirect Cost
City
State
Country
Zip Code
Segal, Liora; Katz, Liora S; Lupu-Meiri, Monica et al. (2014) Proteinase-activated receptors differentially modulate in vitro invasion of human pancreatic adenocarcinoma PANC-1 cells in correlation with changes in the expression of CDC42 protein. Pancreas 43:103-8
Hiram-Bab, Sahar; Shapira, Yuval; Gershengorn, Marvin C et al. (2012) Serum deprivation induces glucose response and intercellular coupling in human pancreatic adenocarcinoma PANC-1 cells. Pancreas 41:238-44
Lupu-Meiri, Monica; Geras-Raaka, Elizabeth; Lupu, Ruth et al. (2012) Knock-down of plasminogen-activator inhibitor-1 enhances expression of E-cadherin and promotes epithelial differentiation of human pancreatic adenocarcinoma cells. J Cell Physiol 227:3621-8
Levkovitz, Liron; Yosef, Nir; Gershengorn, Marvin C et al. (2010) A novel HMM-based method for detecting enriched transcription factor binding sites reveals RUNX3 as a potential target in pancreatic cancer biology. PLoS One 5:e14423
Davani, Behrous; Ariely, Sahar; Ikonomou, Laertis et al. (2009) Human islet-derived precursor cells can cycle between epithelial clusters and mesenchymal phenotypes. J Cell Mol Med 13:2570-81
Mulla, Christopher M; Geras-Raaka, Elizabeth; Raaka, Bruce M et al. (2009) High levels of thyrotropin-releasing hormone receptors activate programmed cell death in human pancreatic precursors. Pancreas 38:197-202
Couty, Jean-Pierre; Lupu-Meiri, Monica; Oron, Yoram et al. (2009) Kaposi's sarcoma-associated herpesvirus-G protein-coupled receptor-expressing endothelial cells exhibit reduced migration and stimulated chemotaxis by chemokine inverse agonists. J Pharmacol Exp Ther 329:1142-7