Our lab is interested in the process of chromosome segregation and how defects in this process can affect the development of a multicellular organism. Over the past few years we have focused on the meiotic divisions that produce haploid gametes. We have been studying a class of temperature-sensitive (ts) embryonic lethal mutants from C. elegans that arrest in metaphase of meiosis I. In wildtype animals, oocytes in prophase of meiosis I are fertilized by sperm. Following fertilization, the oocyte chromosomes undergo two meiotic divisions, discarding the extra chromosomes in the polar bodies. These first meiotic divisions are important as any errors in chromosome segregation at this stage can lead to embryos with an abnormal number of chromosomes, which would likely lead to lethality. In our mutants, the oocyte chromosomes arrest in metaphase of meiosis I and never separate their chromosome homologs and never extrude polar bodies. Our meiotic mutants define five genes;they encode subunits of the Anaphase Promoting Complex or Cyclosome (APC/C). This complex serves as an E3 ubiquitin ligase that targets proteins for destruction (by the 26S proteasome) during the metaphase to anaphase transition of the cell cycle. We have named these mutants mat for their defects in the metaphase to anaphase transition during meiosis I. To identify extragenic regulators or substrates of these APC/C subunits, we have carried out a genetic suppression screen using a mat-3 mutant. The majority of our 27 suppressor mutations are dominant. These suppressors have been mapped using single nucleotide polymorphism (SNP) technology and define at least 9 complementation groups. A large number of alleles represent mutations in three spindle checkpoint components. These are the C. elegans orthologs of MAD1, MAD2, and MAD3. The spindle checkpoint prevents the metaphase to anaphase transition when chromosomes are not properly attached to the mitotic spindle. Our results suggest that this checkpoint also operates during meiosis. We identified one allele in the mdf-1 (the C. elegans Mad1 ortholog), two alleles in the mdf-3 gene (the Mad3 ortholog), and 12 alleles in the mdf-2 gene (the Mad2 ortholog). We believe that our mat mutants are not triggering the checkpoint, but rather that the checkpoint normally operates during meiosis as a negative regulator of the APC/C. Perhaps the checkpoint functions to regulate the proper timing of the meiotic divisions. We also identified three dominant suppressors that were mutations in a positive regulator of the APC/C. This gene is called fzy-1 and is the Cdc20/Fzy ortholog. These three mutations cluster in a small region of the protein thought to be important for its interaction with MDF-2. These mutations presumably disrupt the interaction with MDF-2 and thus prevent MDF-2 inhibition of the APC/C. In the past year, we have characterized another suppressor allele that harbors a mutation in an APC subunit, such-1. We had previously tested this gene for a role in the meiotic divisions (using RNAi) yet failed to find an early embryonic phenotype. A temperature-sensitive reduction-of-function allele does suggest that this gene functions during meiosis;meiotic 1-cell embryos are observed at the non-permissive temperature, but at a low frequency. RNAi of the such-1 gene in the suppressed strain reverts the strain back to the meiotic 1-cell arrest phenotype. This finding strongly suggests that our suppressor allele is a gain-of-function allele in such-1. Sequencing of the such-1 gene in this mutant background confirmed that such-1 harbored a mutation in its coding sequence. Our suppressor screen was instrumental in identifying this rare gain-of-function allele that revealed to us that this APC subunit could function during the meiotic divisions. The such-1 gene encodes an APC-5 ortholog and interestingly, there are two apc-5-like genes in C. elegans. We have recently shown that the other apc-5 gene, gfi-3, is not essential based on RNAi treatment. There are no existing mutations in gfi-3 other than a transposon insertion allele. We are working to determine if this allele has an associated phenotype. RNAi of gfi-3 does not enhance other APC mutants, while RNAi of such-1 does. The such-1 reduction-of-function allele mentioned above also does enhance other APC loss-of-function phenotypes. These results suggest that such-1 is a meiotic APC-5 subunit. Depletion of this gene enhances weak APC mutants while a gain-of-function allele suppresses weak APC mutants. This suppression data suggests that a mutant gain-of-function version of the SUCH-1 protein might maintain the function of the multisubunit APC. Our hypothesis for the GFI-3 subunit is that this APC-5 subunit acts in other tissues or at other times during development. We are trying to prove this prediction using GFP reporter constructs.

Project Start
Project End
Budget Start
Budget End
Support Year
10
Fiscal Year
2009
Total Cost
$358,875
Indirect Cost
City
State
Country
Zip Code
Shakes, Diane C; Allen, Anna K; Albert, Kelsey M et al. (2011) emb-1 encodes the APC16 subunit of the Caenorhabditis elegans anaphase-promoting complex. Genetics 189:549-60
Richie, Christopher T; Bembenek, Joshua N; Chestnut, Barry et al. (2011) Protein phosphatase 5 is a negative regulator of separase function during cortical granule exocytosis in C. elegans. J Cell Sci 124:2903-13
Stein, Kathryn K; Nesmith, Jessica E; Ross, Benjamin D et al. (2010) Functional redundancy of paralogs of an anaphase promoting complex/cyclosome subunit in Caenorhabditis elegans meiosis. Genetics 186:1285-93
Moore, Akilah; Golden, Andy (2009) Hypothesis: Bifunctional mitochondrial proteins have centrosomal functions. Environ Mol Mutagen 50:637-48
Golden, Andy; Liu, Jun; Cohen-Fix, Orna (2009) Inactivation of the C. elegans lipin homolog leads to ER disorganization and to defects in the breakdown and reassembly of the nuclear envelope. J Cell Sci 122:1970-8