Cargo Sorting and Intralumenal Vesicle Budding by the ESCRT Complexes Membrane budding and fission is a fundamental process of eukaryotic cell biology. Endocytosis, the formation of intracellular transport and secretory vesicles, and mitochondrial fission are examples of inward budding. In the classical example of clathrin-mediated endocytosis, the cytosolic protein dynamin forms arrays on the outside of the membrane neck, and membrane fission is driven thermodynamically by the hydrolysis of GTP. The formation of multivesicular bodies (MVBs) is the prototypical example of outward budding. MVBs are formed during the maturation of endosomes destined to fuse with lysosomes, and mediate the sorting of ubiquitinated membrane proteins to the lysosome. Portions of the limiting membrane of the endosome are internalized to form intralumenal vesicles (ILVs). When the MVB fuses with the lysosome, ILV contents are degraded by lysosomal hydrolases. When ILVs are released through fusion with the plasma membrane, they are referred to as exosomes. The budding of enveloped viruses from the plasma membrane and cell division (cytokinesis) are other examples of outward budding events. Outward budding events in MVB formation, viral budding, and cytokinesis are directed from the cytosol. Since cytosol is in contact with the inside, not the outside of the neck of the nascent bud, the mechanics of membrane fission differ fundamentally from inward budding, and utilize a completely distinct protein machinery. A major breakthrough in understanding outward budding came from the identification in yeast of the ESCRT machinery responsible for MVB formation. The ESCRT machinery is conserved throughout eukaryotes, and many enveloped viruses of mammals use the ESCRT pathway to bud, including HIV-1. The closure of the membrane neck in cytokinesis also uses the ESCRT pathway. The assembly of ESCRT complexes on endosomes is triggered by the presence of phosphatidylinositol 3-phosphate (PI(3)P) and ubiquitinated cargo proteins. ESCRT-I and II directly bind to cargo, and in turn recruit ESCRT-III. There are four ESCRT-III subunits in yeast, Vps2, Vps20, Vps24, and Snf7, together with two associated ESCRT-III-like proteins, Did2 and Vps60. ESCRT-III subunits exist in the cytosol as monomers, and assemble with each other on membranes in large multimeric arrays. ESCRT-II is a Y-shaped complex that contains two copies of the Vps25 subunit, which recruits ESCRT-III by directly binding to Vps20. Vps20 binds to Snf7, comprising a subcomplex of ESCRT-III. Snf7, in turn, directly binds to the Bro1 domain of the ESCRT-associated protein Alix (known as Bro1 in yeast). The Vps20:Snf7 complex recruits the Vps2:Vps24 subcomplex to form the complete ESCRT-III complex. A subset of ESCRT-III proteins directly bind to the N-terminal MIT domain of the AAA ATPase Vps4. Vps4 is a central player in the MVB pathway that is required for the disassembly of the ESCRT-III complex. ESCRT function can be conceptually separated into two phases: cargo recruitment and concentration, followed by membrane invagination and budding. The long term objectives of this project are to: 1) determine the structures of ESCRT complexes by x-ray crystallography, abetted where necessary by electron microscopy, hydrodynamics, molecular simulations, and small angle x-ray scattering;2) to determine how ESCRTs assemble on membranes containing PI(3)P and cargo using binding and spectroscopic techniques;and 3) to study the mechanism of ILV formation by a microscopic, spectroscopic, and structure/function approaches. In this reporting period, the biogenesis of multivesicular bodies was reconstituted and visualized using giant unilamellar vesicles, fluorescent ESCRT-0, I, II, and III complexes, and a membrane-tethered fluorescent ubiquitin fusion as a model cargo. ESCRT-0 forms domains of clustered cargo but does not deform membranes. ESCRT-I and II in combination deform the membrane into buds, in which cargo is confined. ESCRT-I and II localize to the bud necks, and recruit ESCRT-0-ubiquitin domains to the buds. ESCRT-III subunits localize to the bud neck and efficiently cleave the buds to form intralumenal vesicles. Intralumenal vesicles produced in this reaction contain the model cargo but are devoid of ESCRTs. The observations explain how the ESCRTs direct membrane budding and scission from the cytoplasmic side of the bud without being consumed in the reaction. The final step in the ESCRT cycle is the disassembly of the ESCRT-III lattice by the AAA ATPase Vps4. Vps4 assembles on its membrane-bound ESCRT-IIII substrate with its cofactor, Vta1. The crystal structure of the dimeric VSL domain of yeast Vta1 with the small ATPase and the b domains of Vps4 was determined. Residues involved in structural interactions are conserved and are required for binding in vitro and for Cps1 sorting in vivo. Modeling of the Vta1 complex in complex with the lower hexameric ring of Vps4 indicates that the 2-fold axis of the Vta1 VSL domain is parallel to within 20 degrees of the 6-fold axis of the hexamer. This suggests that Vta1 might not crosslink the two hexameric rings of Vps4, but rather stabilizes an array of Vps4-Vta1 complexes for ESCRT-III disassembly.
Showing the most recent 10 out of 16 publications