The structure of the Rep endonuclease domain (Hickman et al., 2002) revealed that it is unrelated to all other structurally characterized nucleases and provided the first view of an HUH superfamily member. Rep is homologous to the origin binding domains of the SV40 T antigen (Luo et al., 1996) and replication initiation protein E1 of bovine papillomavirus (Enemark et al., 2000). The HUH residues, which bind the catalytically required metal ion, converge with a helix bearing the two active site tyrosine residues to create the enzyme active site cleft. Subsequent co-crystal structures of the Rep nuclease domain with oligonucleotides representing two specific regions of the AAV genome showed that the nuclease domain uses two different protein surfaces to recognize its DNA target. One surface binds a hairpin that is at the very tip of the viral genome and the other recognizes a repeated tetranucleotide sequence close to the genome ends that constitutes the Rep binding site. These structures allowed us to propose a model for the assembly of a hexameric Rep-DNA complex that is poised to nick the viral DNA and begin unwinding it as a prelude to replication. It seems likely that site-specific integration also begins with a nick at a related sequence in human chromosome 19. Although it is believed that Rep assembles as a hexameric helicase, such assemblies had not previously been observed and the mode of Rep multimerization remains controversal. We have recently been studying an N-terminally truncated version of Rep in which the endonuclease domain is missing. This portion of Rep assembles as a hexamer on both single-stranded and dsDNA substrates, and is not dependent on specific viral DNA sequences or on the presence of nucleotides. We identified the portion of the protein responsible for multimerization on DNA, and we have been able to directly visualize these hexameric complexes using electron microscopy (Maggin et al., 2012). Crystallization trials are underway. Our interest in members of the HUH superfamily is now being extended in our studies on the Helitron superfamily of DNA transposases. Enemark, E.J., Chen, G., Vaughn, D.E., Stenlund, A., and Joshua-Tor, L. (2000) Mol. Cell 6, 149-158. Flotte, T.R. (2005) Pediatric Res. 58, 1143-1147. Hickman, A.B., Ronning, D.R., Kotin, R.M., and Dyda, F. (2002) Mol. Cell 10, 327-337. Im, D.S. and Muzyczka, N. (1990) Cell 61, 447-457. Le Bec, C. and Douar, A.M. (2006) Gene Ther. 13, 805-813. Lee, H.C., Kim, S.J., Kim, K.S., Shin, H.CV., and Yoon, J. W. (2000) Nature 408, 483-488. Luo, X., Sanford, D.G., Bullock, P.A., and Bachovchin, W.W. (1996) Nat. Struct. Biol. 3, 1034-1039. Maggin, J.E., et al. (2012) J. Virol. 86, 3337-3346.

Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
2015
Total Cost
Indirect Cost
Name
U.S. National Inst Diabetes/Digst/Kidney
Department
Type
DUNS #
City
State
Country
Zip Code
Chandler, Michael; de la Cruz, Fernando; Dyda, Fred et al. (2013) Breaking and joining single-stranded DNA: the HUH endonuclease superfamily. Nat Rev Microbiol 11:525-38
Maggin, Jenna E; James, Jeffrey A; Chappie, Joshua S et al. (2012) The amino acid linker between the endonuclease and helicase domains of adeno-associated virus type 5 Rep plays a critical role in DNA-dependent oligomerization. J Virol 86:3337-46