We explored whether the distribution of adipose cell size, the estimated total number of adipose cells, and the expression of adipogenic genes in subcutaneous adipose tissue are linked to the phenotype of high visceral and low subcutaneous fat depots in obese adolescents. A total of 38 adolescents with similar degrees of obesity agreed to have a subcutaneous periumbilical adipose tissue biopsy, in addition to metabolic (oral glucose tolerance test and hyperinsulinemic euglycemic clamp) and imaging studies (MRI, DEXA, (1)H-NMR). Subcutaneous periumbilical adipose cell-size distribution and the estimated total number of subcutaneous adipose cells were obtained from tissue biopsy samples fixed in osmium tetroxide and analyzed by Beckman Coulter Multisizer. The adipogenic capacity was measured by Affymetrix GeneChip and quantitative RT-PCR. Subjects were divided into two groups: high versus low ratio of visceral to visceral + subcutaneous fat (VAT/VAT+SAT). The cell-size distribution curves were significantly different between the high and low VAT/(VAT+SAT) groups, even after adjusting for age, sex, and ethnicity (MANOVA P = 0.035). Surprisingly, the fraction of large adipocytes was significantly lower (P <0.01) in the group with high VAT/(VAT+SAT), along with the estimated total number of large adipose cells (P <0.05), while the mean diameter was increased (P <0.01). From the microarray analyses emerged a lower expression of lipogenesis/adipogenesis markers (sterol regulatory element binding protein-1, acetyl-CoA carboxylase, fatty acid synthase) in the group with high VAT/(VAT+SAT), which was confirmed by RT-PCR. A reduced lipo-/adipogenic capacity, and fraction and estimated number of large subcutaneous adipocytes may contribute to the abnormal distribution of abdominal fat and hepatic steatosis, as well as to insulin resistance in obese adolescents. In mammals, calories ingested in excess of those used are stored primarily as fat in adipose tissue;consistent ingestion of excess calories requires an enlargement of the adipose tissue mass. Thus, a dysfunction in adipose tissue growth may be a key factor in insulin resistance due to imbalanced fat storage and disrupted insulin action. Adipose tissue growth requires the recruitment and then the development of adipose precursor cells, but little is known about these processes in vivo. In this study, adipose cell-size probability distributions were measured in two Zucker fa/fa rats over a period of 151 and 163 days, from four weeks of age, using micro-biopsies to obtain subcutaneous (inguinal) fat tissue from the animals. These longitudinal probability distributions were analyzed to assess the probability of periodic phenomena. Adipose tissue growth in this strain of rat exhibits a striking temporal periodicity of approximately 55 days. A simple model is proposed for the periodicity, with PPAR signaling driven by a deficit in lipid uptake capacity leading to the periodic recruitment of new adipocytes. This model predicts that the observed period will be diet-dependent. Adipose tissue grows by two mechanisms: hyperplasia and hypertrophy. Thiazolidinediones are insulin-sensitizing PPAR gamma agonists that are known to affect the morphology of adipose tissue. In this study, adipose cell-size probability distributions were measured in six Zucker fa/fa rats over a period of 24 days, from four weeks of age, using micro-biopsies to obtain subcutaneous (inguinal) fat tissue from the animals. Three of the rats were gavaged daily with rosiglitazone, a TZD, and three served as controls. These longitudinal probability distributions were analyzed to obtain the rate of increase in cell-size diameter in rosiglitazone-treated animals, and the hyperplasia induced by treatment quantitatively. We found that treatment leads to hypertrophy that leads to an approximately linear rate of cell diameter increase (2 um/day), and that the hyperplasia evident in treated animals occurs largely within the first eight days of treatment. The availability of additional lipid storage due to treatment may alleviate lipotoxicity and thereby promote insulin sensitivity. The hypothesis that a TZD regimen involving repeated treatments of limited duration may suffice for improvements in insulin sensitivity merits further investigation. Inflammation is associated with increased body mass and purportedly with increased size of adipose cells. We sought to determine whether increased size of adipose cells is associated with localised inflammation in weight-stable, moderately obese humans. We recruited 49 healthy, moderately obese individuals for quantification of insulin resistance (modified insulin suppression test) and subcutaneous abdominal adipose tissue biopsy. Cell size distribution was analysed with a multisizer device and inflammatory gene expression with real-time PCR. Correlations between inflammatory gene expression and cell size variables, with adjustment for sex and insulin resistance, were calculated. Adipose cells were bimodally distributed, with 47% in a 'large'cell population and the remainder in a 'small'cell population. The median diameter of the large adipose cells was not associated with expression of inflammatory genes. Rather, the fraction of small adipose cells was consistently associated with inflammatory gene expression, independently of sex, insulin resistance, and BMI. This association was more pronounced in insulin-resistant than insulin-sensitive individuals. Insulin resistance also independently predicted expression of inflammatory genes. This study demonstrates that among moderately obese, weight-stable individuals an increased proportion of small adipose cells is associated with inflammation in subcutaneous adipose tissue, whereas size of mature adipose cells is not. The observed association between small adipose cells and inflammation may reflect impaired adipogenesis and/or terminal differentiation. However, it is unclear whether this is a cause or consequence of inflammation. This question and whether small vs large adipose cells contribute differently to inflammation are topics for future research. We recently identified differences in abdominal subcutaneous adipose tissue (SAT) from insulin-resistant (IR) as compared to obesity-matched insulin sensitive individuals, including accumulation of small adipose cells, decreased expression of cell differentiation markers, and increased inflammatory activity. This study was initiated to see if these changes in SAT of IR individuals were present in omental visceral adipose tissue (VAT);in this instance, individuals were chosen to be IR, but varied in degree of adiposity. We compared cell size distribution and genetic markers in SAT and VAT of IR individuals undergoing bariatric surgery. Eleven obese/morbidly obese women were IR by the insulin suppression test. Adipose tissue surgical samples were fixed in osmium tetroxide for cell size analysis via Beckman Coulter Multisizer. Quantitative rtPCR for genes related to adipocyte differentiation and inflammation was performed. While proportion of small cells and expression of adipocyte differentiation genes did not differ between depots, inflammatory genes were upregulated in VAT. Diameter of SAT large cells correlated highly with increasing proportion of small cells in both SAT and VAT (r = 0.85, p = 0.001;r = 0.72, p = 0.01, respectively). No associations were observed between VAT large cells and cell size variables in either depot. The effect of body mass index (BMI) on any variables in both depots was negligible. The major differential property of VAT of IR women is increased inflammatory activity, independent of BMI. The association of SAT adipocyte hypertrophy with hyperplasia in both depots suggests a primary role SAT may have in regulating regional fat stora
Showing the most recent 10 out of 16 publications