Laboratory activities to address our first goal include radiolabeling targeting molecules with a positron emitting radionuclide (F-18, Br-76, Ga-68, Cu-64, Zr-89) and evaluating the selectivity of uptake in xenograft tumor models that express varying levels of the desired target using small animal PET imaging (INVEON PET/CT). We have developed a variety of antibody and peptide based targeting molecules that are being evaluated for selectivity to angiogenesis markers, chemokine receptors, growth factor receptors, gastrin releasing hormone receptor, glucagon-like peptide type 1, inflammation, hypoxia, and apoptosis markers. Peptides are modified by conjugation with a metal chelator appropriate for one of the radiometals; incorporation of a cysteine residue to provide a unique sulfhydryl for radiolabeling with 18F-FBEM; and/or reacting a lysine residue with 18F-SFB. These same peptide reactive groups can be radiolabeled with Br-76-containing prosthetic groups. New methods of radiolabeling are also an area of research effort. The wide range of radionuclide half-lives provides the ability to select the appropriate radionuclide for the pharmacokinetics of our radioligand. The automation of frequently practiced radiochemical syntheses is important for safe and reliable preparation of tracers for the many studies required for radiotracer validation. Small animal imaging and dissection studies are used to evaluate the targeting selectivity and pharmacokinetics of biodistribution for our radiolabeled compounds. Targeted optical imaging can be achieved by coupling near IR or visible fluorophores to targeting peptides or small drug-like molecules. We have focused on attaching fluorophores to peptide ligands for angiogenesis, lymphangiogenesis and gastrin releasing hormone tumor markers. This optical technique has wide applications in the study of biological mechanisms in small animals and has application in the clinic for targets accessible by endoscopy. The Laboratory has its own CRI Maestro imaging device for conducting these studies. Both of these imaging modalities require the development of novel targeting agents. We utilize phage display peptide libraries, single chain antibody libraries, and systematic evolution of ligands to develop new probes. For labeling purposes, we are utilizing and developing procedures for site-specific modification of proteins and peptides. This allows the introduction of fluorophores, radionuclide prosthetic groups, or metal chelating agents at sites on the peptide that will not diminish the targeting selectivity of our newly designed probes. In addition, we have exploited our HPLC-MS capabilities to study metabolite profiles and metabolic rates of our novel ligands. All ligands used for the various imaging modalities (radioactive and non-radioactive) can be studied by HPLC-MS. Biodistribution studies can be conducted on many peptides and small drug-like molecules using the sensitivity of mass spectrometry rather than radioactivity or fluorescence. We recently utilized HPLC-MS to evaluate ligand internalization. Through quantitation of a peptide ligand in the various cellular pools, we could determine the amount of internalization of the ligand. Thus, the sensitivity and specificity of HPLC-MS can evaluate many important properties that are necessary in order to fully characterize a novel ligand. In terms of nanomedicine, we are generating novel NanoProbes that exhibit high sensitivity and ultra-low background noise in both cells and in vivo applications. By integrating molecular imaging, nanobioconjugation chemistry and molecular/clinical biology, we are developing imaging probes that can be utilized for imaging disease-related biological processes including but not limited to protease expressions such as matrix metalloproteinases, cathepsins, caspases, apoptosis, and angiogenesis. Furthermore, our probing system can be applied for cell tracking, early diagnosis and monitoring of therapeutic efficacy. We have set nanobioconjugation chemistry particularly for peptides/proteins, biopolymers, and inorganic nanoparticles. These Nanoprobes will take full advantage of different imaging modalities such as optical imaging, MRI, PET, CT and photoacoustic imaging and could provide unique information that impact preclinical and eventually clinical diagnostics. We are developing NanoCarriers that can be utilized for targeted delivery of therapeutics. Various non-toxic and targeted nano-hybrid biomolecules that carry and stabilize therapeutic agents are under development that combine antifouling biopolymers, targeting ligands, self-assembled polymeric nanoparticles, iron oxide/gold nanoparticles and carbon nanotubes. Small chemicals, therapeutic peptides/proteins and siRNA/miRNA can be engineered and formulated by sophisticated nanobioconjugation and encapsulation methods to maximize therapeutic efficacy. To date, various conventional anticancer drugs and newly identified small drug-like molecules in the pipeline are successfully reformulated and their therapeutic efficacies are under evaluation in specific disease animal models. Furthermore, with the help of molecular imaging techniques, carrier systems and their outcomes can be non-invasively tracked and monitored in vivo. We have interest in developing ultrasensitive, simple and cost-effective NanoDiagnostics for screening and early detection of disease-specific biomarkers and drugs using combined inorganic and polymeric nano-platform technology, fluorescence amplification strategy and electrochemistry. Our system is expected to boost the sensitivity of conventional ELISA technology and facilitate the detection of disease-specific antigens in various biological samples in an efficient fashion. This technology can be applied to real-time, cell-based, high-throughput drug screening systems. Currently, various unique systems are under development for antigen detection and for screening drugs modulating apoptosis and kinase pathways. In addition, we are also interested in developing point-of-care (POC) devices that can quickly determine the level of biomarkers for immediate care and measure the progression of specific disease. Nanoparticles can be prepared that have many unique properties. We have interest in developing nano-platforms for therapeutic purposes as well as molecular imaging. Among properties that can be applied for molecular imaging are fluorescence, fluorescence quenching, and magnetic properties that allow tracking by MRI. We are developing nanoplatforms that can be utilized for early detection of disease bio-markers, monitoring for therapeutic efficacy, and for targeted delivery of therapeutics. We believe nanoparticles can be employed to develop simple inexpensive biomarker assay kits that should exceed the sensitivity of ELISA.

Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Biomedical Imaging & Bioengineering
Department
Type
DUNS #
City
State
Country
Zip Code
Zhu, Shoujun; Yung, Bryant C; Chandra, Swati et al. (2018) Near-Infrared-II (NIR-II) Bioimaging via Off-Peak NIR-I Fluorescence Emission. Theranostics 8:4141-4151
Lin, Li-Sen; Song, Jibin; Song, Liang et al. (2018) Simultaneous Fenton-like Ion Delivery and Glutathione Depletion by MnO2 -Based Nanoagent to Enhance Chemodynamic Therapy. Angew Chem Int Ed Engl 57:4902-4906
Huang, Xiaolin; He, Zhimei; Guo, Dan et al. (2018) ""Three-in-one"" Nanohybrids as Synergistic Nanoquenchers to Enhance No-Wash Fluorescence Biosensors for Ratiometric Detection of Cancer Biomarkers. Theranostics 8:3461-3473
Yu, Guocan; Zhao, Xinlian; Zhou, Jiong et al. (2018) Supramolecular Polymer-Based Nanomedicine: High Therapeutic Performance and Negligible Long-Term Immunotoxicity. J Am Chem Soc 140:8005-8019
Li, Deling; Zhang, Jingjing; Chi, Chongwei et al. (2018) First-in-human study of PET and optical dual-modality image-guided surgery in glioblastoma using 68Ga-IRDye800CW-BBN. Theranostics 8:2508-2520
Liu, Yijing; Yang, Zhen; Huang, Xiaolin et al. (2018) Glutathione-Responsive Self-Assembled Magnetic Gold Nanowreath for Enhanced Tumor Imaging and Imaging-Guided Photothermal Therapy. ACS Nano 12:8129-8137
Zhang, Fuwu; Ni, Qianqian; Jacobson, Orit et al. (2018) Polymeric Nanoparticles with a Glutathione-Sensitive Heterodimeric Multifunctional Prodrug for In Vivo Drug Monitoring and Synergistic Cancer Therapy. Angew Chem Int Ed Engl 57:7066-7070
Watson, Dionysios C; Yung, Bryant C; Bergamaschi, Cristina et al. (2018) Scalable, cGMP-compatible purification of extracellular vesicles carrying bioactive human heterodimeric IL-15/lactadherin complexes. J Extracell Vesicles 7:1442088
Zhang, Deliang; Zhuang, Rongqiang; Guo, Zhide et al. (2018) Desmin- and vimentin-mediated hepatic stellate cell-targeting radiotracer 99mTc-GlcNAc-PEI for liver fibrosis imaging with SPECT. Theranostics 8:1340-1349
Mu, Jing; Lin, Jing; Huang, Peng et al. (2018) Development of endogenous enzyme-responsive nanomaterials for theranostics. Chem Soc Rev 47:5554-5573

Showing the most recent 10 out of 374 publications