Transcription factors RUNX1 and CBFbeta play key roles in leukemogenesis and normal hematopoiesis. Mutations or chromosome translocations affecting RUNX1 or CBFB (which encodes CBFbeta) are found in 20-30% of patients with acute leukemia. A chromosome 16 inversion (inv)16 that generates a fusion gene between CBFB and MYH11 (which encodes the smooth muscle myosin heavy chain, SMMHC) is found in all patients with acute myeloid leukemia (AML) subtype M4Eo. My lab has studied RUNX1 and CBFbeta for their roles in leukemogenesis and normal hematopoiesis for the last 15 years. We have established a mouse model of human AML by targeted insertion of the fusion gene CBFB-MYH11 in mouse ES cells which demonstrated the critical role of CBFB-MYH11 in leukemogenesis. Using transgenic mouse and zebrafish models we have demonstrated that RUNX1 and CBFbeta are required for multiple steps of normal hematopoiesis, starting from the hematopoietic stem cells. We have also conducted in vitro analysis to understand the molecular level mechanisms of CBFbeta-SMMHC function, which will be critical for designing new therapeutic approaches for AML. Dominant RUNX1 inhibition has been proposed as a common pathway for CBF-leukemia. Using knock-in mouse strategy, we previously demonstrated that Cbfb-MYH11 dominantly blocks Runx1/Cbfb function in hematopoiesis and induces AML when accompanied by cooperating mutations. CBFbeta-SMMHC inhibits RUNX1/CBFbeta via the functions of several domains in the fusion protein including (1) RUNX1 high affinity binding domain (HABD) and (2) multimerization and repression domain (MRD). However, it is not clear whether these domains are important for leukemogenesis in vivo, since the data came from experimental systems in vitro. To test the hypothesis that they are important for leukemogenesis, we generated knockin mice expressing CBFbeta-SMMHC with deletions of the proposed functional domains. Our results suggest critical roles for the MRD, but not the HABD. The HABD-deleted protein (CBFbeta-SMMHCd179-221) did not bind RUNX1 with high affinity, was less efficient in sequestering RUNX1 and caused less severe hematopoietic defects in mice than full-length CBFbeta-SMMHC. Surprisingly the Cbfb+/MYH11d179-221 (expressing the CBFbeta-SMMHCd179-221 protein) mice developed leukemia spontaneously without ENU treatment, much faster than those mice expressing full-length CBFbeta-SMMHC. A larger pool of leukemia initiating cells, increased expression of MN1, and retention of RUNX1 phosphorylation are potential mechanisms for accelerated leukemia development in these mice. Clinically one of the 10 CBFB-MYH11 fusions detected in AML patients also encodes a fusion protein that lacks HABD, which does not bind or repress RUNX1 efficiently. Our data suggest that RUNX1 dominant inhibition is not required for leukemogenesis by CBFbeta-SMMHC (Kamikubo et al., Cancer Cell, in revision). However, it is likely that RUNX1 interaction is still required, based on our data that hemizygous deletion of Runx1 led to slower leukemia development in the Cbfb-MYH11 knockin mice (Zhao et al., unpublished data). The C-terminal region of CBFbeta-SMMHC is responsible for multimerization, which also interacts with corepressors;thus this region might be critical for RUNX1 repression. To determine the importance of this multimerization domain in vivo, we generated knock-in mice expressing CBFbeta-SMMHC with a 95 aa C-terminal deletion (CBFbeta-SMMHCdC95), which truncates this multimerization/repression domain. CBFbeta-SMMHCdC95 expressing F1 heterozygous mice (Cbfb+/MYH11dC95) developed normally with no significant hematopoietic defects. However, the mice proceeded to a lethal myeloproliferative disorder (MPD) during their second year of life. ENU treatment of the Cbfb+/MYH11dC95 mice accelerated the development of the MPD phenotype but did not induce leukemia. These data suggest that the multimerization domain of SMMHC is important for both hematopoiesis blockage and leukemogenesis, especially the blastic transformation of inv16 leukemia (Kamikubo et al, manuscript in preparation). Previous results from in vitro and in vivo studies have shown that the interaction between CBFbeta-SMMHC and RUNX1 is a key step in leukemogenesis, even though our recent studies are revealing RUNX1-repression independent functions by CBFbeta-SMMHC. Likewise, RUNX1-CBFbeta interaction might be critical for leukemia involving RUNX1 mutations, such as the AML1-ETO (also known as RUNX1-ETO) fusion gene generated by t(8;21) in AML. Thus, inhibitors of CBFbeta - RUNX1 interaction may have potential therapeutic applications for both (inv)16 and t(8;21) AML, which account for 20-30% of all AML cases. In collaboration with the NIH Chemical Genomics Center (NCGC), we developed a CBFbeta and RUNX1 bead-based proximity assay in Amplified Luminescence Proximity Homogenous Assay (ALPHA) Screen format and optimized it for high throughput screening. A total of 243,398 compounds were screened with this assay at NCGC, which led to the identification of 137 putative inhibitors by Structure-Activity Relationships and Curve Class. Confirmatory ALPHA and HTRF (homogeneous time resolved fluorescence) assays were performed and candidate compounds showing consistent results were further tested by Bioacore to characterize the kinetics and binding affinity of the compounds. These follow-up tests have so far identified 70 potential candidate compounds.

Project Start
Project End
Budget Start
Budget End
Support Year
15
Fiscal Year
2009
Total Cost
$1,126,262
Indirect Cost
Name
National Human Genome Research Institute
Department
Type
DUNS #
City
State
Country
Zip Code
Mitsuda, Yoshihide; Morita, Ken; Kashiwazaki, Gengo et al. (2018) RUNX1 positively regulates the ErbB2/HER2 signaling pathway through modulating SOS1 expression in gastric cancer cells. Sci Rep 8:6423
Morita, Ken; Suzuki, Kensho; Maeda, Shintaro et al. (2017) Genetic regulation of the RUNX transcription factor family has antitumor effects. J Clin Invest 127:2815-2828
Zhao, L; Alkadi, H; Kwon, E M et al. (2017) The C-terminal multimerization domain is essential for leukemia development by CBF?-SMMHC in a mouse knockin model. Leukemia 31:2841-2844
Hyde, R Katherine; Liu, Paul; Friedman, Alan D (2017) RUNX1 and CBF? Mutations and Activities of Their Wild-Type Alleles in AML. Adv Exp Med Biol 962:265-282
Zhen, Tao; Kwon, Erika M; Zhao, Ling et al. (2017) Chd7 deficiency delays leukemogenesis in mice induced by Cbfb-MYH11. Blood 130:2431-2442
Jiang, Xi; Hu, Chao; Ferchen, Kyle et al. (2017) Targeted inhibition of STAT/TET1 axis as a therapeutic strategy for acute myeloid leukemia. Nat Commun 8:2099
Morita, Ken; Maeda, Shintaro; Suzuki, Kensho et al. (2017) Paradoxical enhancement of leukemogenesis in acute myeloid leukemia with moderately attenuated RUNX1 expressions. Blood Adv 1:1440-1451
Morita, Ken; Noura, Mina; Tokushige, Chieko et al. (2017) Autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells. Sci Rep 7:16604
Sood, Raman; Kamikubo, Yasuhiko; Liu, Paul (2017) Role of RUNX1 in hematological malignancies. Blood 129:2070-2082
Jiang, Xi; Hu, Chao; Arnovitz, Stephen et al. (2016) miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia. Nat Commun 7:11452

Showing the most recent 10 out of 40 publications