The arterial wall and arterial valves are complex macromolecular structures. One of the major elements of these structures is the scaffold that provides the strength and flexibility to perform the task in hand either retaining the blood in vessels against the arterial pressure or maintaining pressure via the function of coronary valves. In the last several years it has become apparent that the actual microstructure and composition of these macromolecules could influence the progress of different disease states most notably atherosclerosis and value calcification. To gain a better understanding of this process, we have embarked on studies to understand the fine structure of the macromolecules in arterial vascular bed using a novel optical imaging technique that relies on the non-linear excitation (NLE) of collagen and elastin to provide sub-micron images of their structure in unfixed fresh samples together with direct measures of low density lipoprotein particles (LDL) binding using fluorescence microscopy and conventional histology methods. These studies have identified Decorin as a major binding site for LDL in the valve leaflet. Over the last year we have made the following progress: 1) We are currently confirming our studies in the valve leaflet in the more general vascular bed using the renal artery ostia diverter we described two years ago. Protein samples for this vascular structure are being evaluated to establish whether a similar binding pattern discovered in the valves is in play in the peripheral vasculature. 2) Using our screening assay for LDL-Decorin binding, we have been evaluated several molecules for use in a pre-clinical screen in an atheroma prone mouse model. These studies will be designed to look for molecules that interfere with the LDL-Decorin interaction and then evaluate whether these molecules delay or inhibit atheroma formation in the mouse. Currently we have screened and rejected simple chondroitin sulfates and some homologs of heparin as being too low affinity for this purpose, though strong inhibion of binding can be demonstrated at high concentration. Currently we are evaluating several other candidate molecules to accomplish this task as well as evaluating the potential for conducting a more complete chemical screen of this interaction.

Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2011
Total Cost
$304,472
Indirect Cost
Name
National Heart, Lung, and Blood Institute
Department
Type
DUNS #
City
State
Country
Zip Code
Lucotte, Bertrand M; Powell, Chloe; Knutson, Jay R et al. (2017) Direct visualization of the arterial wall water permeability barrier using CARS microscopy. Proc Natl Acad Sci U S A 114:4805-4810
Zadrozny, Leah M; Neufeld, Edward B; Lucotte, Bertrand M et al. (2015) Study of the development of the mouse thoracic aorta three-dimensional macromolecular structure using two-photon microscopy. J Histochem Cytochem 63:8-21
Dao, Lam; Glancy, Brian; Lucotte, Bertrand et al. (2015) A Model-based approach for microvasculature structure distortion correction in two-photon fluorescence microscopy images. J Microsc 260:180-93
Albert, Scott; Balaban, Robert S; Neufeld, Edward B et al. (2014) Influence of the renal artery ostium flow diverter on hemodynamics and atherogenesis. J Biomech 47:1594-602
Neufeld, Edward B; Zadrozny, Leah M; Phillips, Darci et al. (2014) Decorin and biglycan retain LDL in disease-prone valvular and aortic subendothelial intimal matrix. Atherosclerosis 233:113-21
Neufeld, Edward B; Yu, Zu-Xi; Springer, Danielle et al. (2010) The renal artery ostium flow diverter: structure and potential role in atherosclerosis. Atherosclerosis 211:153-8
Kwon, Gina P; Schroeder, Jamie L; Amar, Marcelo J et al. (2008) Contribution of macromolecular structure to the retention of low-density lipoprotein at arterial branch points. Circulation 117:2919-27