We are continuing development of transcatheter mitral cerclage annuloplasty, a novel technique which establishes circumferential tension around the mitral valve annulus by exploiting both natural (coronary venous) and un-natural (intramyocardial septal) trajectories. We have established proof-of-principal in a porcine model of ischemic cardiomyopathy that cerclage annuloplasty reduces secondary (functional) mitral valve regurgitation. A first in human test of mitral cerclage annuloplasty was performed and reported by our laboratory alumnus and close collaborator in Pusan Korea. We are developing a refined system of devices for mitral cerclage annuloplasty, and have worked closely industry contractor to finalize devices human treatment. This year we completed Good Laboratory Practice animal experiments to finalize the design. We plan first human testing in the USA in FY2019. We have conceived a wholly new approach to treat tricuspid valve regurgitation called transauricular intrapericardial tricuspid annuloplasty (TRAIPTA). We have demonstrated the success of TRAIPTA to reduce functional tricuspid regurgitation in a new animal model. We are working with a large medical device manufacturer to further develop these devices for testing in patients in the USA. We entered into a Collaborative Research and Development Agreement with a large catheter company to develop this technique for testing in patients. Work continues apace. We have developed a new technique to introduce large implants into the aorta for transcatheter aortic valve replacement and related procedures, by crossing from the inferior vena cava into the abdominal aorta. This challenges the long-held paradigm that the aortic wall must remain inviolate during non-surgical procedures. The technique has proven lifesaving in over three dozen patients. We are sponsoring a multicenter evaluation of the technique while we develop purpose-built devices to close the access port. We have been educating physicians and their teams in this technique on three continents, where it has been applied successfully in over 700 patients to date. We completed a prospective multicenter test of the safety and effectiveness of this technique on 100 patients, and showed it appears satisfactory even in centers with limited experience, and that the results may be better than surgical access for transcatheter aortic valve replacement through the chest. We have developed transcaval closure devices that are easier and potentially safer for less experienced operators to use on their patients. This year we completed enrollment in an early feasibility study of this device in the USA and the results are promising. We are continuing development of this device for pivotal commercial testing next year. We have developed and tested a completely new approach to prevent a life-threatening complication of the transcatheter mitral valve implantation. In as many as a half of patients, the transcatheter mitral valve forces the natural mitral leaflet to block blood as it leaves the heart, a condition called left ventricular outflow tract obstruction. We developed a technique called LAMPOON to split the native anterior mitral leaflet and showed how it works in animals. It has been successfully applied in over 60 patients so far. This year we completed enrollment in a prospective multicenter study in the USA. We recently developed a related technique to prevent a life-threatening complication of transcatheter aortic valve replacement. In these patients, transcatheter aortic valve replacement is dangerous or impossible because the existing tissue leaflets, of the native or surgical prosthetic valve, can block off the coronary arteries. In a modification of the LAMPOON technique, we have developed and tested a new technique called BASILICA (Bioprosthetic Aortic Scallop Intentional Laceration to prevent Iatrogenic Coronary Artery obstruction) in animals. So far the technique has been applied in over 60 patients in USA and Europe. This year we completed enrollment in a prospective multicenter study in the USA.
Showing the most recent 10 out of 43 publications