We have been studying clathrin-independent forms of endocytosis (CIE) and have identified a number of endogenous PM proteins that enter cells through this mechanism. We have begun to study these proteins in detail in an attempt to understand how they travel in cells and whether they specifically interact with cellular machinery. We have identified signals in the cytoplasmic tails of CD44, CD98 and CD147 that are responsible for their altered trafficking and are looking for cellular machinery that is responsible for recognition and sorting of these signals. Understanding how these proteins move into and out of cells is important because these proteins are involved in interaction with the extracellular matrix (CD44), are involved in nutrient transport (CD98) and interact with integrins and matrix metalloproteinases (CD147). To facilitate these studies we have developed a method to covalently label PM proteins so that we can follow quantitatively their entry into cells by CIE and their subsequent itinerary. Using SNAP tag technology, we created fusion cargo proteins that contain the SNAP tag on the extracellular portion of the protein and then made a modification to the fluorescently labeled SNAP ligand so that we could release the fluorescent label with cell impermeable reducing agent (Cole and Donaldson, 2012). This allows us to track the internalized SNAP protein while removing the cell surface pool. We are using this technology to study the trafficking and turnover and identification of interacting proteins of the SNAP tagged cargo proteins.

Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
2012
Total Cost
$671,704
Indirect Cost
Name
National Heart, Lung, and Blood Institute
Department
Type
DUNS #
City
State
Country
Zip Code
Mathew, Mohit P; Donaldson, Julie G (2018) Distinct cargo-specific response landscapes underpin the complex and nuanced role of galectin-glycan interactions in clathrin-independent endocytosis. J Biol Chem 293:7222-7237
Stepicheva, Nadezda A; Dumas, Megan; Kobi, Priscilla et al. (2017) The small GTPase Arf6 regulates sea urchin morphogenesis. Differentiation 95:31-43
Liu, Xiong; Shu, Shi; Billington, Neil et al. (2016) Mammalian Nonmuscle Myosin II Binds to Anionic Phospholipids with Concomitant Dissociation of the Regulatory Light Chain. J Biol Chem 291:24828-24837
Donaldson, Julie G; Johnson, Debra L; Dutta, Dipannita (2016) Rab and Arf G Proteins in Endosomal Trafficking & Cell Surface Homeostasis. Small GTPases :0
Dutta, Dipannita; Donaldson, Julie G (2015) Rab and Arf G proteins in endosomal trafficking. Methods Cell Biol 130:127-38
Dutta, Dipannita; Donaldson, Julie G (2015) Sorting of Clathrin-Independent Cargo Proteins Depends on Rab35 Delivered by Clathrin-Mediated Endocytosis. Traffic 16:994-1009
Mayor, Satyajit; Parton, Robert G; Donaldson, Julie G (2014) Clathrin-independent pathways of endocytosis. Cold Spring Harb Perspect Biol 6:
Maldonado-Báez, Lymarie; Donaldson, Julie G (2013) Hook1, microtubules, and Rab22: mediators of selective sorting of clathrin-independent endocytic cargo proteins on endosomes. Bioarchitecture 3:141-6
Cole, Nelson B; Donaldson, Julie G (2012) Releasable SNAP-tag probes for studying endocytosis and recycling. ACS Chem Biol 7:464-9
Dutta, Dipannita; Williamson, Chad D; Cole, Nelson B et al. (2012) Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis. PLoS One 7:e45799

Showing the most recent 10 out of 13 publications