The Tox21 Programs federal partners include the Environmental Protection Agency (EPA), the Food and Drug Administration (FDA) and NIH, with leadership from NCATS and the National Toxicology Program (NTP) at the National Institute of Environmental Health Sciences (NIEHS). These agencies work together to advance in vitro toxicological testing. The Tox21 Program can be separated into three NCATS teams: Systems Toxicology, Genomic Toxicology, and Computational Toxicology. The Tox21 Computational Toxicology team has enhanced a variety of tools that are routinely used by Tox21 partners to access each others data. The team performed data analysis of more than 25 assays that were identified, developed, optimized, and/or screened by the Tox21 systems toxicology team and gene expression data generated by the Tox21 Genomic Toxicology team. These activities include normalization and correction, fitting of concentration-response curves to generate potency and efficacy measures, classification of curves based on a set of criteria that included significance of fit (measured by p-values), completeness of fit, and efficacy, evaluation of assay performance by data reproducibility, data driven selection of compounds for follow up studies, and identification of genes and pathways involved in cell responses to chemical exposure. In addition, the Tox21 Computational Toxicology team has updated the web-based, automated structure-activity relationship (SAR) analysis tool for the systems toxicology team to conduct SAR analysis on all 10K library screens. The Tox21 Computational Toxicology team has also updated the Tox21 Assay Tracking System that stores the assay annotations and detailed experimental conditions and screening protocols for all the Tox21 assays. The 10K data from all assays screened up to FY18 have been made public in PubChem totaling 219 assay entries (AIDs) and over 98 million data points. The Tox21 public data browser has been updated with the latest assay results from the 10K library screens totaling 68 assays. This browser provides the public with visualization of Tox21 qHTS data including concentration-response curves, curve fitting results and different activity metrics along with chemical structure and analytical QC results. Data are searchable by assay and/or chemical. Results from multiple assays and/or chemicals can be overlaid for ease of comparison. All data as well as assay descriptions and detailed screening protocols (SLPs) are available for download. The Tox21 data download site has been updated with new assay result files in the column format, combing raw data and corrected data, for ease of analysis by other Tox21 partners. The Tox21 Computational Toxicology team has continued to work with the Tox21 chemical working group to generate PDF files for the Tox21 10K library chemical QC results, including the 4-month compound stability test results. QC results on >11K samples and 4-month stability results on 10K samples have been released in the public Tox21 Browser (https://tripod.nih.gov/tox21/) and the links to the PDFs have been provided for Tox21 compounds deposited in PubChem. In FY18, the Tox21 Computational Toxicology team has been working with other NCATS teams to update the NCATS Pharmaceutical Collection (NPC), which is part of the Tox21 10K compound library, with drugs approved in recent years to include an up-to-date list of all approved drugs. The updated NPC drug collection consists of 2,935 approved small molecule drugs that have been plated in 1536-well format for high throughput screening. Furthermore, the Web based browser for the NCATS BioPlanet database (https://tripod.nih.gov/bioplanet/) has been updated to add links to lncRNA data. The BioPlanet collects a list of all human pathways that allow the Tox21 Program to design assays to measure their chemical responses. The BioPlanet currently annotates nearly 1,700 unique human pathways by source, biological function and process, disease and toxicity relevance, and availability of probing assays. A paper describing the BioPlanet has been published in Frontiers in Pharmacology in FY18. The Tox21 Computational Toxicology team is also leading one of the Tox21 cross-partner projects Expansion of Pathway Coverage by Tox21 High-Throughput Screening Assays for Better Prediction of Adverse Drug Effects, which utilizes the BioPlanet as a tool to define the biological space and identify assays for screening. The data generated from this project will be used to build computational models to predict liver and cardiotoxicity. In addition, the Tox21 Computational Toxicology team has continued to work with the Tox21 Genomic Toxicology team to refine methods for concentration response gene expression data analysis including strategies for point-of-departure (PoD) determination, as well as combination screening data analysis of toxicants and modulators (the ToxMatrix). The software platform for visualization and analysis of concentration response gene expression data has been updated with more functionalities.

Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2019
Total Cost
Indirect Cost
Name
National Center for Advancing Translational Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Delavan, Brian; Roberts, Ruth; Huang, Ruili et al. (2018) Computational drug repositioning for rare diseases in the era of precision medicine. Drug Discov Today 23:382-394
Li, Shuaizhang; Hsu, Chia-Wen; Sakamuru, Srilatha et al. (2018) Identification of Angiogenesis Inhibitors Using a Co-culture Cell Model in a High-Content and High-Throughput Screening Platform. SLAS Technol 23:217-225
Lynch, Caitlin; Zhao, Jinghua; Huang, Ruili et al. (2018) Identification of Estrogen-Related Receptor ? Agonists in the Tox21 Compound Library. Endocrinology 159:744-753
Xia, Menghang; Huang, Ruili; Shi, Qiang et al. (2018) Comprehensive Analyses and Prioritization of Tox21 10K Chemicals Affecting Mitochondrial Function by in-Depth Mechanistic Studies. Environ Health Perspect 126:077010
Han, Yan; Zhao, Jinghua; Huang, Ruili et al. (2018) Omics-Based Platform for Studying Chemical Toxicity Using Stem Cells. J Proteome Res 17:579-589
Huang, Ruili; Xia, Menghang; Sakamuru, Srilatha et al. (2018) Expanding biological space coverage enhances the prediction of drug adverse effects in human using in vitro activity profiles. Sci Rep 8:3783
Li, Shuaizhang; Huang, Ruili; Solomon, Samuel et al. (2017) Identification of acetylcholinesterase inhibitors using homogenous cell-based assays in quantitative high-throughput screening platforms. Biotechnol J 12:
Torimoto-Katori, Nao; Huang, Ruili; Kato, Harutoshi et al. (2017) In Silico Prediction of hPXR Activators Using Structure-Based Pharmacophore Modeling. J Pharm Sci 106:1752-1759
Wu, Leihong; Liu, Zhichao; Auerbach, Scott et al. (2017) Integrating Drug's Mode of Action into Quantitative Structure-Activity Relationships for Improved Prediction of Drug-Induced Liver Injury. J Chem Inf Model 57:1000-1006
Lynch, Caitlin; Sakamuru, Srilatha; Huang, Ruili et al. (2017) Identifying environmental chemicals as agonists of the androgen receptor by using a quantitative high-throughput screening platform. Toxicology 385:48-58

Showing the most recent 10 out of 26 publications