The Flow Cytometry Core Facility of the National Human Genome Research Institute has the goal of providing all NHGRI investigators with access to high quality flow cytometry services. The Core serves to enhance the scope and quality of scientific research performed by the Institute. For FY2014 the Flow Cytometry Core was staffed by Stacie Anderson (Core Director, 100% effort, GMBB), and Martha Kirby (100% effort, GMBB). The Flow Cytometry Core is staffed Monday through Friday. Access to the Flow Core after regular working hours and on weekends/holidays is possible for authorized investigators through Accutech card readers. The NHGRI Flow Cytometry Core currently maintains two BD FACSArias that are primarily used for sorting cells. Basically the Arias and the LSRII have the same laser and filter configurations. However one Aria has an additional 561nm laser, which addresses the need to discriminate fluorochromes, such as PE and fluorescent proteins, such as DsRed and mCherry. Each FACSAria and LSRII is configured with three lasers/four and can measure up to nine/thirteen fluorescent parameters as well as physical parameters (size and granularity). Ideally, the LSRII should have a 561nm laser so that initial analysis experiments could be performed on the LSRII rather than on the Aria, which is typically dedicated to the isolation of cells. Among the various applications over the past year, these sorting capabilities have been used for isolation of tissue cell populations for animal transplantation experiments;isolation of blood cell sub-populations for analysis of functional cellular properties and gene transcription profiles, as well as high throughput screening of enhancer regions. The FACSArias typically have a two to three week sign up waiting time and are currently used at capacity. For direct flow cytometry analysis applications not involving cell sorting, the Flow Core offers one BD FACSCalibur and one BD LSRII. The FACSCalibur can measure up to four fluorescent parameters, and are routinely used for data acquisition and pre-sort analysis. Typical uses of the FACSCalibur include analysis of GFP expression and cell cycle, as well as mutagenesis screening. The BD LSRII uses digital electronics and Diva software similar to the Aria and is used to perform 9-color analyses. This allows investigators to characterize cells in more detail before sorting on the Aria. The instrument is equipped with a High Throughput Sample (HTS) device that gives the investigator the ability to analyze many samples in 96 well plate format without the need of sitting at the instrument during the acquisition procedure. The BD LSRII is available during regular Core hours as well as after hours and on weekends. The Flow Core maintains a laser scanning cytometer (LCS). The LSC uses laser-based opto-electronics and automated analysis capabilities to simultaneously and rapidly measure biochemical constituents and evaluate cell morphologies. Current applications (100%) are focused on zebra fish projects including drug screens and blood development. The Flow Core also maintains a Miltenyi Auto MACS that is used for magnetic cell separations. The AutoMACS is often used as a pre-enrichment step prior to sorting on a flow cytometer. In September 2014 the autoMACS will be replaced with a new autoMACS PRO Separator that replaces the original model. The autoMACS Pro Separator is a bench top instrument for high-speed magnetic cell sorting of multiple samples. Employing MACS Technology, the autoMACS Pro Separator is designed for cell isolation in a fully automated, walk-away fashion. Over the past year, the services and capabilities of the NHGRI Flow Core have been taken advantage of by over 60 trainees from 5 Branches/14 Sections in the Institute (Table 1). July 2014 LSRII 234/268 scheduled appointments Calibur 638/406 scheduled appointments Arias 339/362 scheduled appointments icys 12/8 scheduled appointments TOTAL scheduled appointments for FY2014 through July, 2014 1223/1044* scheduled appointments *(Includes a one month government shutdown) In addition, the Flow Core continued to maintain CLIA accreditation in support of immunophenotyping and protein expression studies used in NHGRI clinical research protocols. (Current accreditation March 2014 through March 2016) The BD LSRII uses digital electronics and Diva software similar to the Aria and is used to perform 9-color analyses. This allows investigators to characterize cells in more detail before sorting on the Aria. The instrument is equipped with a High Throughput Sample (HTS) device that gives the investigator the ability to analyze many samples in 96 well plate format without the need of sitting at the instrument during the acquisition procedure. The BD LSRII is available during regular Core hours as well as after hours and on weekends. The Flow Core maintains a laser scanning cytometer (LCS). The LSC uses laser-based opto-electronics and automated analysis capabilities to simultaneously and rapidly measure biochemical constituents and evaluate cell morphologies. Current applications (100%) are focused on zebra fish projects including drug screens and blood development. The Flow Core also maintains a Miltenyi Auto MACS that is used for magnetic cell separations. The AutoMACS is often used as a pre-enrichment step prior to sorting on a flow cytometer. Over the past year, the services and capabilities of the NHGRI Flow Core have been taken advantage of by over 60 trainees from 5 Branches/14 Sections in the Institute LSRII 265 scheduled appointments Calibur 551 scheduled appointments Arias 327 scheduled appointments icys 35 scheduled appointments TOTAL scheduled appointments for FY2013 1178 In addition, the Flow Core continued to maintain CLIA accreditation in support of immunophenotyping and protein expression studies used in NHGRI clinical research protocols.

Agency
National Institute of Health (NIH)
Institute
National Human Genome Research Institute (NHGRI)
Type
Scientific Cores Intramural Research (ZIC)
Project #
1ZICHG200350-07
Application #
8948413
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Human Genome Research
Department
Type
DUNS #
City
State
Country
Zip Code
Aflaki, Elma; Borger, Daniel K; Grey, Richard J et al. (2017) Efferocytosis is impaired in Gaucher macrophages. Haematologica 102:656-665
Shaw, Kit L; Garabedian, Elizabeth; Mishra, Suparna et al. (2017) Clinical efficacy of gene-modified stem cells in adenosine deaminase-deficient immunodeficiency. J Clin Invest 127:1689-1699
O'Brien, Kelly A; Farrar, Jason E; Vlachos, Adrianna et al. (2017) Molecular convergence in ex vivo models of Diamond-Blackfan anemia. Blood 129:3111-3120
Gomez-Rodriguez, Julio; Meylan, Françoise; Handon, Robin et al. (2016) Itk is required for Th9 differentiation via TCR-mediated induction of IL-2 and IRF4. Nat Commun 7:10857
Psaila, Bethan; Barkas, Nikolaos; Iskander, Deena et al. (2016) Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways. Genome Biol 17:83
Vilboux, Thierry; Malicdan, May Christine V; Chang, Yun Min et al. (2016) Cystic cerebellar dysplasia and biallelic LAMA1 mutations: a lamininopathy associated with tics, obsessive compulsive traits and myopia due to cell adhesion and migration defects. J Med Genet 53:318-29
Pathak, Anand; Pemov, Alexander; McMaster, Mary L et al. (2015) Juvenile myelomonocytic leukemia due to a germline CBL Y371C mutation: 35-year follow-up of a large family. Hum Genet 134:775-87
Yokoyama, Tadafumi; Yoshizaki, Ayumi; Simon, Karen L et al. (2015) Age-Dependent Defects of Regulatory B Cells in Wiskott-Aldrich Syndrome Gene Knockout Mice. PLoS One 10:e0139729
Gomez-Rodriguez, Julio; Wohlfert, Elizabeth A; Handon, Robin et al. (2014) Itk-mediated integration of T cell receptor and cytokine signaling regulates the balance between Th17 and regulatory T cells. J Exp Med 211:529-43
Paralkar, Vikram R; Mishra, Tejaswini; Luan, Jing et al. (2014) Lineage and species-specific long noncoding RNAs during erythro-megakaryocytic development. Blood 123:1927-37

Showing the most recent 10 out of 22 publications