Behavioral neuroscience links systems-level circuitry to behavior, cognition and emotion and is thus critical for understanding the afflictions that affect neuropsychiatric patients. Linking cognitive changes in a behaving rat or mouse to targeted manipulations of neural circuitry requires the convergence of expertise from scientific fields inside and outside of neuroscience. In designing research projects to understand the anatomy, genetics, and pharmacology underlying the control of behavior, researchers must understand the nature of the task, its measurements, and how to interpret the data. Several steps lie between the design of the experiment and the behavioral output, including choice of task (e.g., operant vs mazes), how to train the animal (shaping vs conditioning), the type of surgical manipulation (ablation, cannulation, inactivation, stimulation, etc.), and the format of data for analysis (summary vs. trial-by-trial). Most neuroscience researchers who use standard off-the-shelf behavioral tasks (such as forced swim, rotarod and T-Maze) are not experts in the psychology of behavior and must therefore rely on experts in the domain of cognition. Complex cognitive behavior in rodents is often gauged by measuring the pattern of behavioral responses in tasks that involve, for example, decision-making, attention, memory, rule learning, flexibility, discrimination, and problem solving. In these tasks, rats and mice typically indicate their decisions by nose-poking visual patterns on a touchscreen like an iPad, making nose-poke entries into a series of lit holes, or depressing an extended lever triggered by time or cues. Some cognitive functions extrapolated from animal behavior have positively informed our investigation of cognitive functions in humans. Such animal-to-human approaches (e.g., delayed response) have directed the design and development of analogous tests for use in humans (e.g., self-ordered working memory). Behavioral neuroscience has also benefitted in the opposite direction by means of human-to-animal approaches as in the case of extradimensionsal/intradimensional set shifting, a test based upon the principles of the human Wisconsin Card Sorting Task. Together, these advances in behavioral testing have been particularly useful in establishing the neuroanatomical and neurochemical pathology for specific cognitive deficits in a range of brain and behavior disorders. In addition to providing equipment, training and consulting for researchers interested in using rodents as models to investigate disorders of brain and behavior, one important goal for the RBC is to continue to design and develop cutting edge behavioral methods and applications while maintaining facility resources at a high level of utility for users at all levels of expertise. This requires constant maintenance and calibration of equipment, user education and interaction, and commitment to setting the standard as the best Rodent Behavioral Core facility in the world in terms of research quality. Since the RBCs inception, the labs of several principal Investigators from NIMH, as well as NINDS, NIA, NIDCD, NHGRI and NICHD have used the RBC to conduct specific behavioral studies in an efficient and targeted manner. In the past year, the labs of 30 principal investigators have used the RBC facility with over 70 trainees that have been trained in using specific resources in the Core. In some cases, we have custom designed and developed new tasks such as olfactory cue discrimination combined with navigation, and have instituted ultrasonic vocalization recordings from groups of rodent families to measure social communication. We have written custom code for individual users to provide a detailed level of behavioral analysis for their experiments. We have also enabled the installation of optogenetic equipment in operant chambers, and mazes and open testing arenas combined with tracking software, as requested by many principal investigators. In addition, due to the high demand for modern tools for motor analyses like foot-foot spacing, paw pressure, distance travelled, body rotation, stride length, and toe spread, we invested in a Gait Scan motor analysis system to provide highly sensitive and noninvasive detection and assessment of skilled motor performance that can be used to evaluate several neurological and neuromuscular disorders. Finally, because many researchers expressed an interest in combining electrophysiological methods with awake behavior, we installed a SmartBox electrophysiology system to acquire local field potentials, as well as single and multiple unit recordings. Importantly, this system integrates seamlessly with nearly every behavioral system or software in the RBC. Due to the large number of users, and the needs for custom programming for specialized equipment and experimental requirements, the demands on the staff have been great. Earlier this year, we hired a second technician to support the operations and maintenance of the core.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Scientific Cores Intramural Research (ZIC)
Project #
1ZICMH002952-03
Application #
9790856
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2018
Total Cost
Indirect Cost
Name
U.S. National Institute of Mental Health
Department
Type
DUNS #
City
State
Country
Zip Code