The objective of this research is to develop techniques that utilize solid-state memory technologies from device, circuit, architecture, and system perspectives across I/O hierarchy in order to exploit their true potential for improving I/O stack performance in high-performance computing systems. I/O friendly memory system architectures will be developed to enable hybrid processor-memory 3D integrations with largely reduced off-chip I/O traffic. Adaptive cache management and hotspot prediction methods will be developed to address the low random write performance of solid-state drives, and data processing techniques will be developed to enable run-time configurable trade-offs among solid-state drive performance characteristics. A comprehensive full-system simulation infrastructure will be developed to evaluate and demonstrate the research under diverse high-performance computing workloads. The research will facilitate the high-performance computing systems to most effectively utilize existing/emerging memory and processing technologies to tackle the grand I/O stack design challenge. It can greatly contribute to enabling high-performance computing systems to stay on track of their historic scaling, and hence benefit numerous real-life applications such as biology, chemistry, earth science, health care, etc. This project will also contribute to the society through engaging under-represented groups, research infrastructure dissemination for education and training, and outreach to high school students.