Understanding of mechanisms that control lifespan is among the most challenging biological problems. Although not viewed as a medical condition to be treated, aging is the most prevalent disease-related state. Many complex human diseases are associated with aging, which is both the most significant risk factor and the process that drives the development of these diseases. Clinically, extending lifespan would mean delaying the onset of age-related diseases, such as cancer, neurodegenerative diseases, type II diabetes and sarcopenia. Studies of model organisms and centenarians as well as the use of compounds that extend lifespan in model organisms (e.g., rapamycin) as drugs for multiple human diseases associated with aging suggest that these approaches are feasible. It is also clear that the aging process can be naturally accelerated and delayed (e.g., mammals are characterized by >100-fold difference in lifespan, and it can both increase and decrease during evolution). These differences in lifespan and other traits among mammals are much larger than those among natural isolates of the same species of model organisms, between centenarians and controls, or between wild type and longer-lived mutant organisms identified in various laboratories. Moreover, the observed variation in mammalian lifespan occurs naturally, in contrast to laboratory mutants characterized by extended lifespan but unable to compete in the natural setting. We propose to employ this diversity in lifespan and associated life-history traits to uncover mechanisms that regulate species lifespan in mammals. For this, we will utilize methods of comparative genomics to examine pairs of genomes of closely related short- and long-lived organisms, carry out analysis of lifespan, life-history and other traits across a panel f mammalian tissues and cells using RNA-seq and metabolomics, identify key regulators of lifespan, develop interventions that simultaneously target these regulators,

Public Health Relevance

Many human diseases, including the most devastating, are the diseases of aging - a consequence of an inevitable process that drives the transition from young to old. Species lifespan is linked to life-history and other traits in mammals: we will characterize these traits, identify key longevity determinants by high-throughput and integrative approaches, and use this information to extend lifespan of model organisms.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
NIH Director’s Pioneer Award (NDPA) (DP1)
Project #
4DP1AG047745-03
Application #
8881044
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Guo, Max
Project Start
2013-09-30
Project End
2019-05-31
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
Podolskiy, Dmitriy I; Lobanov, Alexei V; Kryukov, Gregory V et al. (2016) Analysis of cancer genomes reveals basic features of human aging and its role in cancer development. Nat Commun 7:12157
Ma, Siming; Upneja, Akhil; Galecki, Andrzej et al. (2016) Cell culture-based profiling across mammals reveals DNA repair and metabolism as determinants of species longevity. Elife 5:
Podolskiy, Dmitriy I; Gladyshev, Vadim N (2016) Intrinsic Versus Extrinsic Cancer Risk Factors and Aging. Trends Mol Med 22:833-834
Tian, Xiao; Azpurua, Jorge; Ke, Zhonghe et al. (2015) INK4 locus of the tumor-resistant rodent, the naked mole rat, expresses a functional p15/p16 hybrid isoform. Proc Natl Acad Sci U S A 112:1053-8
Zhou, Xuming; Seim, Inge; Gladyshev, Vadim N (2015) Convergent evolution of marine mammals is associated with distinct substitutions in common genes. Sci Rep 5:16550
Ma, Siming; Yim, Sun Hee; Lee, Sang-Goo et al. (2015) Organization of the Mammalian Metabolome according to Organ Function, Lineage Specialization, and Longevity. Cell Metab 22:332-43
Ma, Siming; Lee, Sang-Goo; Kim, Eun Bae et al. (2015) Organization of the Mammalian Ionome According to Organ Origin, Lineage Specialization, and Longevity. Cell Rep 13:1319-26
MacRae, Sheila L; Zhang, Quanwei; Lemetre, Christophe et al. (2015) Comparative analysis of genome maintenance genes in naked mole rat, mouse, and human. Aging Cell 14:288-91
Kaya, Alaattin; Ma, Siming; Wasko, Brian et al. (2015) Defining Molecular Basis for Longevity Traits in Natural Yeast Isolates. NPJ Aging Mech Dis 1:
Bang, Jeyoung; Jang, Mihyun; Huh, Jang Hoe et al. (2015) Deficiency of the 15-kDa selenoprotein led to cytoskeleton remodeling and non-apoptotic membrane blebbing through a RhoA/ROCK pathway. Biochem Biophys Res Commun 456:884-90

Showing the most recent 10 out of 14 publications