Long-term objectives: The proposed studies will ask whether chromosome positioning can inform us about three puzzling patterns of inheritance: missing heritability, acquired traits, and transgenerational inheritance. It represents a major departure from the questions that are usually posed with respect to chromosome positioning, but can be justified by what we currently know about inheritance, epigenetics, and the tremendous capacity of chromosome positioning to affect gene expression and chromosome behavior. The studies will use two new technologies: high-throughput fluorescent in situ hybridization (FISH) and Oligopaints, which have been designed to reduce the cost of FISH while increasing resolution. Health relatedness: Chromosome positioning is a potent regulator of gene expression;proximity of chromosomal regions can direct chromosome rearrangements, the location of genes within the central or peripheral parts of the nucleus is associated with different levels of gene expression, and apposition of chromosomal regions can activate and silence genes. As these processes are essential for normal human development, the studies proposed here on chromosome positioning will have direct relevance to human health. In addition, the potential that chromosome positioning may account for some puzzling forms of heritability brings additional potential for this study to contribute to our understanding of disease and, therefore, the design of strategies to improve health. Innovation: This application proposes a new concept, that chromosome positioning may be able to account for some puzzling forms of inheritance. It also introduces two new technologies using fluorescent in situ hybridization (FISH) that are appropriate for the analysis of many types of chromosome positioning. The first is a technology for high-throughput FISH, permitting a single individual to process up to 3,000 FISH assays per day, and the other, called Oligopaints, is a new type of probe that reduces the cost and increases the resolution of FISH.

Public Health Relevance

The proposed studies will ask whether chromosome positioning can inform us about three puzzling patterns of inheritance: missing heritability, acquired traits, and transgenerational inheritance. It represents a major departure from the questions that are usually posed with respect to chromosome positioning, but can be justified by what we currently know about inheritance, epigenetics, and the tremendous capacity of chromosome positioning to affect gene expression and chromosome behavior. The studies will use two new technologies: high-throughput fluorescent in situ hybridization (FISH) and Oligopaints, which have been designed to reduce the cost of FISH while increasing resolution.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
NIH Director’s Pioneer Award (NDPA) (DP1)
Project #
5DP1GM106412-03
Application #
8710287
Study Section
Special Emphasis Panel (ZGM1-NDPA-A (01))
Program Officer
Janes, Daniel E
Project Start
2012-09-30
Project End
2017-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
3
Fiscal Year
2014
Total Cost
$847,500
Indirect Cost
$347,500
Name
Harvard Medical School
Department
Genetics
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Beliveau, Brian J; Apostolopoulos, Nicholas; Wu, Chao-ting (2014) Visualizing genomes with Oligopaint FISH probes. Curr Protoc Mol Biol 105:Unit 14.23.