I propose to develop a highly innovative patient-specific MRI-based heart modeling environment that represents cardiac functions from molecular processes to electrophysiological and electromechanical interactions at the organ level. I term this environment "virtual electrophysiology lab", and propose to translate it into th clinic and apply it to the non-invasive diagnosis and treatment of heart rhythm and contractile disorders in patients with structural heart disease. This pioneering effort offers to integrate, fo the first time, computational modeling of the heart, traditionally a basic-science discipline, withn the milieu of contemporary patient care. The robust and inexpensive non-invasive approaches for individualized arrhythmia risk stratification and guidance of electrophysiological therapies proposed here will lead to optimized therapy delivery and reduction in health care costs, and will have a dramatic personal, medical and economic impact on society. This project seeks to shift the paradigm of cardiac patient care by utilizing the virtual electrophysiology laboratory environment in three applications pertinent to patients with myocardial infarction: 1. Noninvasive prediction of the optimal ablation targets for infarct-related ventricular tachycardia. The vital electrophysiology lab will be used to accurately identify the optimal targets of ablation in each patient heart non-invasively prior to the clinical procedure. Delivery of ablation will then be swit and precise, eradicating all infarct-related ventricular tachycardias with minimum lesion sizes. This will result in a dramatic improvement in the efficacy of and tolerance for the therapy, as wel as in reduction of post-procedure complications. 2. Arrhythmia risk assessment to determine the need for implantable defibrillator deployment. Personalized simulations of arrhythmia inducibility will be used as a noninvasive, inexpensive, and risk-free surrogate for a clinical elect

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
NIH Director’s Pioneer Award (NDPA) (DP1)
Project #
1DP1HL123271-01
Application #
8561487
Study Section
Special Emphasis Panel (ZRG1-BCMB-N (50))
Program Officer
Lee, Albert
Project Start
2013-09-25
Project End
2018-07-31
Budget Start
2013-09-25
Budget End
2014-07-31
Support Year
1
Fiscal Year
2013
Total Cost
$810,000
Indirect Cost
$310,000
Name
Johns Hopkins University
Department
Biostatistics & Other Math Sci
Type
Schools of Engineering
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Arevalo, Hermenegild J; Vadakkumpadan, Fijoy; Guallar, Eliseo et al. (2016) Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat Commun 7:11437
Bruegmann, Tobias; Boyle, Patrick M; Vogt, Christoph C et al. (2016) Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations. J Clin Invest 126:3894-3904
Zile, Melanie A; Trayanova, Natalia A (2016) Rate-dependent force, intracellular calcium, and action potential voltage alternans are modulated by sarcomere length and heart failure induced-remodeling of thin filament regulation in human heart failure: A myocyte modeling study. Prog Biophys Mol Biol 120:270-80
Molitoris, Jared M; Paliwal, Saurabh; Sekar, Rajesh B et al. (2016) Precisely parameterized experimental and computational models of tissue organization. Integr Biol (Camb) 8:230-42
Trayanova, Natalia A; Chang, Kelly C (2016) How computer simulations of the human heart can improve anti-arrhythmia therapy. J Physiol 594:2483-502
Arevalo, Hermenegild J; Boyle, Patrick M; Trayanova, Natalia A (2016) Computational rabbit models to investigate the initiation, perpetuation, and termination of ventricular arrhythmia. Prog Biophys Mol Biol 121:185-94
Haissaguerre, Michel; Shah, Ashok J; Cochet, Hubert et al. (2016) Intermittent drivers anchoring to structural heterogeneities as a major pathophysiological mechanism of human persistent atrial fibrillation. J Physiol 594:2387-98
Karathanos, Thomas V; Bayer, Jason D; Wang, Dafang et al. (2016) Opsin spectral sensitivity determines the effectiveness of optogenetic termination of ventricular fibrillation in the human heart: a simulation study. J Physiol 594:6879-6891
Priest, James Rush; Gawad, Charles; Kahlig, Kristopher M et al. (2016) Early somatic mosaicism is a rare cause of long-QT syndrome. Proc Natl Acad Sci U S A 113:11555-11560
Bayer, J D; Lalani, G G; Vigmond, E J et al. (2016) Mechanisms linking electrical alternans and clinical ventricular arrhythmia in human heart failure. Heart Rhythm 13:1922-31

Showing the most recent 10 out of 39 publications