We consist of trillions of interacting cells, but our understanding of how they work together is limited. This is because we have traditionally divided organisms from the top-down into broad cell types or iteratively-refined homogeneous subsets and then studied each such population separately. Yet recent studies have shown that even identical cells can exhibit functionally important differences and that cellular behaviors are strongly influenced by both the microenvironment and cellular interactions. Illustratively, for immune dendritic cells (DCs) and T cells - collectively responsible for recognizing pathogens and inducing adaptive immune responses - cellular subtype, signaling milieu, and physical contacts all impact the balance between proinflammatory and regulatory responses. Unfortunately, our inability to thoroughly measure and analyze each of these influences within the context of a complex system has limited our ability to grasp how proper immune function is achieved. I will leverage recent advances in nanotechnology and molecular biology to develop broadly applicable platforms for manipulating and profiling many interacting single cells so that I can uncover how they collectively perform systems-level behaviors from the bottom-up. These will include methods for culturing and monitoring cells in isolation and as a controlled ensemble, performing targeted manipulations, integrating different molecular measures (e.g., RNA and protein), and examining genomic RNA profiles in many single cells in-vitro and in-situ. Although broadly applicable, I will specifically utilize these technologies to examine how DCs and T cells synergistically fight pathogens and how T cells prevent uncontrolled DC inflammation that can drive autoimmunity. Collectively, my work will help identify the cellular players and the strategie they use to execute systems-level behaviors, will enhance our understanding of cellular response, communication, disease, and therapeutics, and will yield transformative new technologies for comprehensively and controllably profiling many different biological systems.

Public Health Relevance

The goal of my proposed research is to develop five core, cross-disciplinary technologies to understand systems-level cellular behaviors from the `bottom-up,' using, as a model, innate immune dendritic cells and adaptive immune T cells, which are collectively responsible for recognizing pathogens and inducing adaptive immune responses. I expect that the proposed work will help transform the way in which we think about single cells, cell-cell interactions, diseased cellular states and therapeutics, providing a new paradigm for understanding the systems-level cellular behaviors manifest in multicellular organisms.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
NIH Director’s New Innovator Awards (DP2)
Project #
1DP2GM119419-01
Application #
8950573
Study Section
Special Emphasis Panel ()
Program Officer
Anderson, Vernon
Project Start
2015-09-30
Project End
2020-05-31
Budget Start
2015-09-30
Budget End
2020-05-31
Support Year
1
Fiscal Year
2015
Total Cost
$2,340,000
Indirect Cost
$840,000
Name
Massachusetts Institute of Technology
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Martin-Gayo, Enrique; Cole, Michael B; Kolb, Kellie E et al. (2018) A Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral State in Dendritic Cells from HIV-1 Elite Controllers. Genome Biol 19:10
Burbage, Marianne; Gasparrini, Francesca; Aggarwal, Shweta et al. (2018) Tuning of in vivo cognate B-T cell interactions by Intersectin 2 is required for effective anti-viral B cell immunity. Elife 7:
Ordovas-Montanes, Jose; Dwyer, Daniel F; Nyquist, Sarah K et al. (2018) Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560:649-654
Kimmerling, Robert J; Prakadan, Sanjay M; Gupta, Alejandro J et al. (2018) Linking single-cell measurements of mass, growth rate, and gene expression. Genome Biol 19:207
Sanjuan Nandin, Irene; Fong, Carol; Deantonio, Cecilia et al. (2017) Novel in vitro booster vaccination to rapidly generate antigen-specific human monoclonal antibodies. J Exp Med :
Gierahn, Todd M; Wadsworth 2nd, Marc H; Hughes, Travis K et al. (2017) Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods 14:395-398
Prakadan, Sanjay M; Shalek, Alex K; Weitz, David A (2017) Scaling by shrinking: empowering single-cell 'omics' with microfluidic devices. Nat Rev Genet 18:345-361
Martin-Gayo, Enrique; Cronin, Jacqueline; Hickman, Taylor et al. (2017) Circulating CXCR5+CXCR3+PD-1lo Tfh-like cells in HIV-1 controllers with neutralizing antibody breadth. JCI Insight 2:e89574
Nirschl, Christopher J; Suárez-Fariñas, Mayte; Izar, Benjamin et al. (2017) IFN?-Dependent Tissue-Immune Homeostasis Is Co-opted in the Tumor Microenvironment. Cell 170:127-141.e15
Shalek, Alex K; Benson, Mikael (2017) Single-cell analyses to tailor treatments. Sci Transl Med 9:

Showing the most recent 10 out of 14 publications