Understanding how mutations affect protein structure significantly impacts drug discovery, protein engineering, and the interpretation of individual genome sequences. However, the effects of many mutations, whether they are beneficial or deleterious, cannot be understood from static protein structures alone. This problem is especially significant for mutations that are located far away from active sites and interaction surfaces. If these mutations do not have obvious large stability costs and are remote from functional sites, how can they influence protein function? Rather than affecting the average structure defined by traditional X-ray crystallography, this proposal determines how mutations may change the relative population of alternative conformations. However, identifying alternative conformations and measuring their impact on protein function represents an experimental challenge. To address these problems, this project builds on my methodological advances to reveal alternative conformations by room temperature X-ray crystallography and electron density sampling. I will study the protein-protein interactions of ubiquitin (Ub) in S. cerevisiae as a model to understand how perturbing the relative populations of conformations impacts molecular recognition. Ub is an ideal model to study the importance of alternative conformations because: previous studies have indicated that diverse Ub conformations and poly-Ub linkages mediate distinct functional roles;its remarkable sequence and functional conservation suggests that the populations of alternative conformations will be particularly susceptible to mutation;and it is a small protein that can be comprehensively mutated. Moreover, I have generated preliminary high-resolution room temperature X-ray data that complement previous NMR experiments to define its accessible alternative conformations. Despite the central importance of different Ub conformations for the cell, the general principles of how different Ub conformations are recognized and direct the assembly of poly-Ub chains remain to be elucidated. To determine how mutations can affect the assembly of specific poly-Ub chains, I will monitor how alternative side chain conformations of Ub participate in the catalytic mechanism of the E2 Ubc1. To test how mutations afect Ub interactions in vivo, I will measure a unique phenotypic profile for each Ub mutant. The central role of Ub in proteostasis and its sequence conservation suggest that the principles I uncover will be widely applicable across all eukaryotes. By measuring the impact of mutation on the conformational ensemble, this proposal addresses fundamental biophysical models of interaction specificity, the organization of the Ub-interaction network, and the molecular mechanisms of phenotypic change. Predictions of how mutation can change the relative populations of conformations are especially important as increased sequencing efforts provide the genetic basis for rare genetic diseases. This project will improve our knowledge and understanding of the relationship between mutation, alternative conformations, and phenotype.

Public Health Relevance

This proposal describes new methods for measuring and predicting changes in protein conformations caused by mutation. Knowledge of how protein conformations are perturbed by disease-causing mutations, coupled with methods for restoring proper protein conformations would dramatically expand opportunities to treat disease.

National Institute of Health (NIH)
Office of The Director, National Institutes of Health (OD)
Early Independence Award (DP5)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BBBP-E (53))
Program Officer
Basavappa, Ravi
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Schools of Medicine
San Francisco
United States
Zip Code
Keedy, Daniel A; van den Bedem, Henry; Sivak, David A et al. (2014) Crystal cryocooling distorts conformational heterogeneity in a model Michaelis complex of DHFR. Structure 22:899-910
Woldeyes, Rahel A; Sivak, David A; Fraser, James S (2014) E pluribus unum, no more: from one crystal, many conformations. Curr Opin Struct Biol 28:56-62
Fenwick, R Bryn; van den Bedem, Henry; Fraser, James S et al. (2014) Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR. Proc Natl Acad Sci U S A 111:E445-54
Williams, Brianna B; Van Benschoten, Andrew H; Cimermancic, Peter et al. (2014) Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe 16:495-503
Lang, P Therese; Holton, James M; Fraser, James S et al. (2014) Protein structural ensembles are revealed by redefining X-ray electron density noise. Proc Natl Acad Sci U S A 111:237-42
Wall, Michael E; Adams, Paul D; Fraser, James S et al. (2014) Diffuse X-ray scattering to model protein motions. Structure 22:182-4
Wall, Michael E; Van Benschoten, Andrew H; Sauter, Nicholas K et al. (2014) Conformational dynamics of a crystalline protein from microsecond-scale molecular dynamics simulations and diffuse X-ray scattering. Proc Natl Acad Sci U S A 111:17887-92
Fischer, Marcus; Coleman, Ryan G; Fraser, James S et al. (2014) Incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery. Nat Chem 6:575-83
Ollikainen, Noah; Smith, Colin A; Fraser, James S et al. (2013) Flexible backbone sampling methods to model and design protein alternative conformations. Methods Enzymol 523:61-85
Fraser, James S; Gross, John D; Krogan, Nevan J (2013) From systems to structure: bridging networks and mechanism. Mol Cell 49:222-31

Showing the most recent 10 out of 12 publications