Neuroblastoma is the most common extracranial solid tumor in childhood with a survival rate less than 10% for relapsed high-risk disease. The molecular lesions underlying neuroblastoma - including heritable germline variants as well as somatic mutations and somatic epigenetic alterations - are still poorly understood, hindering the development of new rational therapies. Moreover, the paucity of coding mutations in neuroblastoma as determined by a recent whole exome-sequencing study of tumors obtained at diagnosis has led us to hypothesize that functional dysregulation in neuroblastoma may be influenced in large part through non-coding mechanisms. In parallel with ongoing germline and somatic whole genome sequencing efforts, I will use integrative experimental and bioinformatic approaches to investigate the extent to which non-coding lesions contribute to neuroblastoma etiology and prognosis. Building on my prior work that discovered and functionally validated the major causal germline variant affecting LMO1 oncogene expression by modulating the affinity for GATA transcription factor binding in an active enhancer region, my first hypothesis (AIM1) is that other non-coding germline variants can affect disease susceptibility and contribute to tumor evolution. I will therefore work to generalize and apply my computational pipeline that identified the LMO1 causal variant in order to uncover other functional germline variants and their mechanisms of dysregulation genome-wide. My second hypothesis (AIM 2) is that non-coding somatic mutations and epigenetic reprogramming can play a dominant role in driving neuroblastoma phenotypes. To this end, I will perform chromatin accessibility profiling and histone marker ChIP-seq across a panel of clinically and molecularly distinct subclasses of neuroblastoma in order to identify important regulatory regions and epigenetic alterations. While these epigenetic alterations will be a primary focus of study, they will also enable the discovery of functional non-coding somatic mutations, which can act as oncogenic drivers in neuroblastoma. These findings will provide novel insights into the molecular basis of neuroblastoma as a whole and of specific disease subclasses, which can form the basis for new rational treatments.

Public Health Relevance

Ongoing genomic profiling efforts have begun to yield therapeutically actionable insights into the molecular basis of neuroblastoma, an aggressive malignancy of childhood. However, recent whole exome sequencing showed a paucity of coding mutations so that the underlying molecular lesions remain poorly understood for the majority of tumors. In parallel with ongoing germline and somatic whole genome sequencing efforts, I will use integrative experimental and bioinformatic approaches to investigate the extent to which non-coding lesions contribute to neuroblastoma etiology and prognosis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Individual Predoctoral NRSA for M.D./Ph.D. Fellowships (ADAMHA) (F30)
Project #
1F30CA192831-01A1
Application #
8982996
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Damico, Mark W
Project Start
2015-07-08
Project End
2017-07-07
Budget Start
2015-07-08
Budget End
2016-07-07
Support Year
1
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Pediatrics
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Henderson, Tara O; Parsons, Susan K; Wroblewski, Kristen E et al. (2018) Outcomes in adolescents and young adults with Hodgkin lymphoma treated on US cooperative group protocols: An adult intergroup (E2496) and Children's Oncology Group (COG AHOD0031) comparative analysis. Cancer 124:136-144
Wang, Xuexia; Sun, Can-Lan; Hageman, Lindsey et al. (2017) Clinical and Genetic Risk Prediction of Subsequent CNS Tumors in Survivors of Childhood Cancer: A Report From the COG ALTE03N1 Study. J Clin Oncol 35:3688-3696
Vujkovic, Marijana; Aplenc, Richard; Alonzo, Todd A et al. (2016) Comparing Analytic Methods for Longitudinal GWAS and a Case-Study Evaluating Chemotherapy Course Length in Pediatric AML. A Report from the Children's Oncology Group. Front Genet 7:139
Sotillo, Elena; Barrett, David M; Black, Kathryn L et al. (2015) Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. Cancer Discov 5:1282-95
Russell, Mike R; Penikis, Annalise; Oldridge, Derek A et al. (2015) CASC15-S Is a Tumor Suppressor lncRNA at the 6p22 Neuroblastoma Susceptibility Locus. Cancer Res 75:3155-66
Oldridge, Derek A; Wood, Andrew C; Weichert-Leahey, Nina et al. (2015) Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism. Nature 528:418-21
Schnepp, Robert W; Khurana, Priya; Attiyeh, Edward F et al. (2015) A LIN28B-RAN-AURKA Signaling Network Promotes Neuroblastoma Tumorigenesis. Cancer Cell 28:599-609
Eleveld, Thomas F; Oldridge, Derek A; Bernard, Virginie et al. (2015) Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations. Nat Genet 47:864-71