The kidney is a complicated organ whose formation requires strict regulation. Changes in key developmental regulators are known to cause human disease, such as pax-2 mutations in Renal-coloboma syndrome and wt-1 mutations in wilms'tumor. However, how such genes as pax-2 regulate this process is largely unknown. Here we describe a new protein, called cysteine containing protein-1 (ccp-1), that is required for kidney development, ccp-1 functions genetically downstream of pax-2. ccp-1 is a member of a conserved, vertebrate-specific gene family that has not been previously characterized in development. The mechanism of action of this gene family is also unknown. To further understand how ccp-1 functions in development, we will conduct research for the following Aims: I) We will test the hypothesis that ccp-1 functions as a nuclear-specific DMA binding protein. We will use EMSA, DNAsel footprinting and the SELEX protocol, with a random 60-mer library and PCR amplification, to determine if ccp-1 binds DNA in a sequence-specific manner. II) We will test the hypothesis that ccp-1 has a cytoplasmic role via interaction with phospholipid scramblase. We will characterize the zebrafish phospholipid scramblase genes and examine their expression patterns in the developing embryo. To determine interaction, we will utilize a yeast two hybrid system. We will test the hypothesis that ccp-1 is a transcriptional regulator of key developmental genes in kidney organogenesis. To discover the changes found in transcription between the ccp-1 gain of function and loss of function embryos, we will employ microarray technology. Novel transcriptional targets will be studied using knockdown technology to uncover the loss of function phenotype. Studying the role of ccp-1 in development will give us new insight into how kidneys form and provide a better understanding of the mechanism of action of this new and conserved gene family. Such development cascades have been essential to comprehending the molecular basis of congenital human disease.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Individual Predoctoral NRSA for M.D./Ph.D. Fellowships (ADAMHA) (F30)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-F10-H (20))
Program Officer
Rankin, Tracy L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Bedell, Victoria M; Ekker, Stephen C (2015) Using engineered endonucleases to create knockout and knockin zebrafish models. Methods Mol Biol 1239:291-305
Bedell, Victoria M; Person, Anthony D; Larson, Jon D et al. (2012) The lineage-specific gene ponzr1 is essential for zebrafish pronephric and pharyngeal arch development. Development 139:793-804
Bedell, Victoria M; Wang, Ying; Campbell, Jarryd M et al. (2012) In vivo genome editing using a high-efficiency TALEN system. Nature 491:114-8
Bedell, Victoria M; Westcot, Stephanie E; Ekker, Stephen C (2011) Lessons from morpholino-based screening in zebrafish. Brief Funct Genomics 10:181-8
Clark, Karl J; Voytas, Daniel F; Ekker, Stephen C (2011) A TALE of two nucleases: gene targeting for the masses? Zebrafish 8:147-9
Clark, Karl J; Balciunas, Darius; Pogoda, Hans-Martin et al. (2011) In vivo protein trapping produces a functional expression codex of the vertebrate proteome. Nat Methods 8:506-15