Plocamium polyhalogenated monoterpenes are metabolites first isolated from the red algae Plocamium cartilagineum, featuring several units of unsaturation, as well as multiple halogens, including two contiguous stereogenic chlorine-bearing carbons. These molecules possess a wide range of biological activity, but most notably show cytotoxicity against a range of solid-tumor cancer cell lines. This promising activity has caught the attention of William Gerwick (Scripps Institution of Oceanography) and Dr. Fred Valeriote (Henry Ford Medical Center). The testing of several members of the Plocamium polyhalogenated monoterpene family suggests only moderate cytotoxicity levels, initial results indicate that these compounds are selective for solid tumors, while remaining nontoxic to healthy cells. However, due to the low abundance from natural sources, these compounds were only isolated in small quantities, and in vivo studies could not be conducted. The Vanderwal group at the University of California Irvine aims to develop the first synthesis of members of the Plocamium polyhalogenated monoterpenes, The proposed synthesis is concise and modular, allowing for multiple members of the class to be synthesized, as well as a host of unnatural analogues, with only minor modifications to the procedure. Initial results on the synthesis of simplified model systems are promising, and once completed, the Plocamium polyhalogenated monoterpene natural products will be synthesized. Through collaboration with Gerwick and Dr. Valeriote, the synthesized compounds will be tested for biological activity, and in the case of known bioactive members, continue in vivo studies.

Public Health Relevance

The field of chemotherapeutics is always in need of drugs that are not only potent to the cancer cells, but remain nontoxic towards healthy cells. The outlined chlorinated natural products show promising activity against a range of solid tumors, as well as remaining nontoxic to other cells, but are difficult to obtain from their natural sources. The Vanderwal group has outlined a strategy to synthesize this group of compounds in order to further test their activity.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Predoctoral Individual National Research Service Award (F31)
Project #
5F31CA174176-02
Application #
8734233
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Korczak, Jeannette F
Project Start
2013-09-23
Project End
2016-09-22
Budget Start
2014-09-23
Budget End
2015-09-22
Support Year
2
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California Irvine
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
City
Irvine
State
CA
Country
United States
Zip Code
92697
Whelan, K A; Chandramouleeswaran, P M; Tanaka, K et al. (2017) Autophagy supports generation of cells with high CD44 expression via modulation of oxidative stress and Parkin-mediated mitochondrial clearance. Oncogene 36:4843-4858
Whelan, Kelly A; Merves, Jamie F; Giroux, Veronique et al. (2017) Autophagy mediates epithelial cytoprotection in eosinophilic oesophagitis. Gut 66:1197-1207
Natsuizaka, Mitsuteru; Whelan, Kelly A; Kagawa, Shingo et al. (2017) Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma. Nat Commun 8:1758
Merves, Jamie F; Whelan, Kelly A; Benitez, Alain J et al. (2016) ATG7 Gene Expression as a Novel Tissue Biomarker in Eosinophilic Esophagitis. Am J Gastroenterol 111:151-3
Tanaka, Koji; Whelan, Kelly A; Chandramouleeswaran, Prasanna M et al. (2016) ALDH2 modulates autophagy flux to regulate acetaldehyde-mediated toxicity thresholds. Am J Cancer Res 6:781-96
Facompre, Nicole D; Harmeyer, Kayla M; Sole, Xavier et al. (2016) JARID1B Enables Transit between Distinct States of the Stem-like Cell Population in Oral Cancers. Cancer Res 76:5538-49
Amanuma, Yusuke; Ohashi, Shinya; Itatani, Yoshiro et al. (2015) Protective role of ALDH2 against acetaldehyde-derived DNA damage in oesophageal squamous epithelium. Sci Rep 5:14142
Kagawa, S; Natsuizaka, M; Whelan, K A et al. (2015) Cellular senescence checkpoint function determines differential Notch1-dependent oncogenic and tumor-suppressor activities. Oncogene 34:2347-59
Sato, Fumiyuki; Kubota, Yoshimasa; Natsuizaka, Mitsuteru et al. (2015) EGFR inhibitors prevent induction of cancer stem-like cells in esophageal squamous cell carcinoma by suppressing epithelial-mesenchymal transition. Cancer Biol Ther 16:933-40
Kinugasa, H; Whelan, K A; Tanaka, K et al. (2015) Mitochondrial SOD2 regulates epithelial-mesenchymal transition and cell populations defined by differential CD44 expression. Oncogene 34:5229-39

Showing the most recent 10 out of 11 publications