Epidermal homeostasis is disrupted in a host of human skin diseases, including psoriasis, chronic wounds, and cancer. Increased understanding of the gene regulatory control of epidermal growth and differentiation by epigenetic regulators, specifically histone arginine methyltransferase PRMT1 and histone arginine demethylase JMJD6, is the central focus of this training plan. First, we will define the role of the histone arginine demethylase JMJD6, which demethylates histone H4 Arginine 3 dimethylation (H4R3me2), in epidermal homeostasis. In our preliminary studies, we observed that the histone mark H4R3me2 is dynamically regulated during human keratinocyte differentiation. In cultured primary human keratinocytes, loss of the H4R3me2 histone arginine demethylase JMJD6 impairs calcium- induced differentiation. To extend these findings, we will define the role of JMJD6 in normal human epidermal tissue homeostasis at the level of intact tissue, leveraging the human tissue regeneration models established in our laboratory. We will also characterize the action of JMJD6 in epidermal growth and differentiation. Second, we will elucidate the role of the histone arginine methyltransferase PRMT1, which methylates histone H4R3, in early progression towards epidermal neoplasia. We recently observed that PRMT1 is required to suppress epidermal differentiation. Loss of PRMT1 by multiple validated short-hairpin RNAs (shRNAs) inhibits proliferation and induces differentiation marker gene expression. Furthermore, PRMT1 is overexpressed in multiple human cancer tissues. Since the first steps in tumor evolution is characterized by alterations in growth and differentiation, we hypothesize that PRMT1 is required for tissue progression toward neoplasia. We will therefore define the role of PRMT1 in epidermis undergoing neoplastic transformation. At the end of the proposed funding period, we hope to have characterized the mechanistic actions of both JMJD6 and PRMT1 gene regulatory proteins in the control of epidermal proliferation and differentiation as a foundation for the future development of new treatment strategies for human disorders of characterized by disrupted epidermal homeostasis.

Public Health Relevance

Epidermal proliferation and differentiation are subject to precise spatial and temporal control to achieve normal skin homeostasis, a balance that is disrupted in a wide spectrum of common human skin diseases including psoriasis, chronic wounds and cancer. Epigenetic regulators, such as histone modifying enzymes, play critical roles in these processes by controlling gene expression through multiple cell division cycles without altering DNA nucleotide sequence. Leveraging the strength of human tissue models established in our laboratory, specifically the normal human epidermal tissue regeneration model and the human skin tissue neoplasm model, this training plan is directed at understanding the gene regulatory mechanisms governing epidermal homeostasis by epigenetic regulators, providing therapeutic information for human epithelial disorders.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Postdoctoral Individual National Research Service Award (F32)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-F10B-S (20))
Program Officer
Baker, Carl
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Schools of Medicine
United States
Zip Code
Bao, Xiaomin; Siprashvili, Zurab; Zarnegar, Brian J et al. (2017) CSNK1a1 Regulates PRMT1 to Maintain the Progenitor State in Self-Renewing Somatic Tissue. Dev Cell 43:227-239.e5
Bao, Xiaomin; Tang, Jiong; Lopez-Pajares, Vanessa et al. (2013) ACTL6a enforces the epidermal progenitor state by suppressing SWI/SNF-dependent induction of KLF4. Cell Stem Cell 12:193-203