The experiments outlined in this application are designed to address the role of the synaptic protein PSD-95 in the synaptic transmission and plasticity of excitatory synapses in the nucleus accumbens shell (NAc) and if these mechanisms underlie some of the effects of chronic drug exposure. Genetic manipulation via recombinant lentivirus will be used to acutely knock down or enhance expression of PSD-95 proteins in medium spiny neurons of the NAc shell in living wild type mice. Characteristics of basal excitatory synaptic transmission will be examined in infected vs uninfected neurons via whole cell patch clamp recording and pharmacological manipulation of acute NAc slices. The effects of PSD-95 depletion or enhancement upon synaptic plasticity in the NAc shell will be addressed by studying NMDAR dependant forms of LTD and LTP as well as endocannabinoid LTD in infected neurons. If time permits, in vivo manipulation of PSD-95 levels will also be combined with a chronic cocaine regimen in order to examine the contributions of this protein to the depression of synaptic strength seen in the NAc shell in response to long term drug exposure.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
5F32DA020220-02
Application #
7238868
Study Section
Human Development Research Subcommittee (NIDA)
Program Officer
Babecki, Beth
Project Start
2006-05-01
Project End
2009-04-30
Budget Start
2007-05-01
Budget End
2008-04-30
Support Year
2
Fiscal Year
2007
Total Cost
$48,796
Indirect Cost
Name
Stanford University
Department
Psychiatry
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305